Journal of Flow Chemistry

, Volume 3, Issue 4, pp 109–113 | Cite as

Continuous-Flow Production of Photocatalytically Active Titanium Dioxide Nanocrystals and Its Application to the Photocatalytic Addition of N,N-Dimethylaniline to N-Methylmaleimide

  • Mostafa Baghbanzadeh
  • Toma N. Glasnov
  • C. Oliver KappeEmail author


A solvothermal continuous-flow method for the scalable and shape tunable synthesis of rod-like/spherical TiO2 nanocrystals (NCs) has been developed. The as-prepared colloidal NCs show photocatalytic activity in an addition-cyclization cascade under continuous-flow conditions.


flow chemistry high-temperature chemistry microreactors nanomaterials photocatalysis titanium dioxide 

References and Notes

  1. 1.
    For two recent reviews, see: (a) Chen, H.; Nanayakkara, C. E.; Grassian, V. H. Chem. Rev. 2012, 112, 5919CrossRefGoogle Scholar
  2. 1.(b)
    Nakataa, K.; Fujishima, A. J. Photochem. Photobiol. C 2012, 13, 169.CrossRefGoogle Scholar
  3. 2.(a)
    Wu, X.; Chen, Z.; Lu, G. Q.; Wang, L. Adv. Funet. Mater. 2011, 21, 4167CrossRefGoogle Scholar
  4. 2.(b)
    Hsiao, P.-T.; Tung, Y.-L.; Teng, H. J. Phys. Chem. C 2010, 114, 6762.CrossRefGoogle Scholar
  5. 3.
    Karch, J.; Birringer, R.; Gleiter, H. Nature 1987, 330, 556.CrossRefGoogle Scholar
  6. 4.(a)
    Epifani, M.; Andreu, T.; Zamani, R.; Arbiol, J.; Comini, E.; Siciliano, P.; Faglia, G.; Morante, J. R. CrystEngComm 2012, 14, 3882CrossRefGoogle Scholar
  7. 4.(b)
    Aluri, G. S.; Motayed, A.; Davydov, A. V.; Oleshko, V. P.; Bertness, K. A.; Sanford, N. A.; Mulpuri, R. V. Nanotechnology 2012, 23, 175501.CrossRefGoogle Scholar
  8. 5.(a)
    Cao, X.; Jing, W.; Xing, W.; Fan, Y.; Kong, Y.; Dong, J. Chem. Commun. 2011, 47, 3457CrossRefGoogle Scholar
  9. 5.(b)
    Chevallier, L.; Bauer, A.; Cavaliere, S.; Hui, R.; Roziere, J.; Jones, D. J. ACS Appi. Mater. Interfaces 2012, 4, 1752.CrossRefGoogle Scholar
  10. 6.
    Kandiel, T. A.; Robben, L.; Alkaim, A.; Bahnemann, D. Photochem. Photobiol. Sei. 2013, 12, 602.CrossRefGoogle Scholar
  11. 7.
    Fang, W. Q.; Gong, X. Q.; Yang, H. G. J. Phys. Chem. Lett. 2011, 2, 725.CrossRefGoogle Scholar
  12. 8.
    For reviews, see: (a) Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891CrossRefGoogle Scholar
  13. 8.(b)
    Gupta, S. M.; Tripathi, M. Cent. Eur. J. Chem. 2012, 10, 279.Google Scholar
  14. 9.
    For some pioneering studies, see: (a) Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L. J. Am. Chem. Soc. 1999, 121, 1613CrossRefGoogle Scholar
  15. 9.(b)
    Niederberger, M.; Bartl, M. H.; Stucky, G. D. Chem. Mater. 2002, 14, 4364CrossRefGoogle Scholar
  16. 9.(c)
    Cozzoli, P. D.; Kornowski, A.; Weller, H. J. Am. Chem. Soc. 2003, 125, 14539CrossRefGoogle Scholar
  17. 9.(d)
    Jun, Y. M.; Casula, M. F.; Sim, J. H.; Kim, S. Y.; Cheon, J. W.; Alivisatos, A. P. J. Am. Chem. Soc. 2003, 125, 15981CrossRefGoogle Scholar
  18. 9.(e)
    Niederberger, M.; Garnweitner, G.; Pinna, N.; Antonietti, M. J. Am. Chem. Soc. 2004, 126, 9120.CrossRefGoogle Scholar
  19. 10.
    For some recent reviews, see: (a) Song, Y.; Hormes, J.; Kumar, C. S. S. R. Small 2008, 4, 698CrossRefGoogle Scholar
  20. 10.(b)
    Marre, S.; Jensen, K. F. Chem. Soc. Rev. 2010, 39, 1183CrossRefGoogle Scholar
  21. 10.(c)
    Zhao, C.-X.; He, L. E.; Qiao, S. Z.; Middelberg, A. P. Chem. Eng. Sci. 2011, 66, 1463CrossRefGoogle Scholar
  22. 10.(d)
    Pumera, M. Chem. Commun. 2011, 47, 5671.CrossRefGoogle Scholar
  23. 11.(a)
    Takagi, M.; Maki, T.; Miyahara, M.; Mae, K. Chem. Eng. J. 2004, 101, 269CrossRefGoogle Scholar
  24. 11.(b)
    Lan, W.; Li, S.; Xu, J.; Luo, G. Chem. Eng. J. 2012, 181–182, 828.CrossRefGoogle Scholar
  25. 12.
    Eun, T. H.; Kim, S.-H.; Jeong, W.-J.; Jeon, S.-J.; Kim, S.-H.; Yang, S.-M. Chem. Mater. 2009, 21, 201.CrossRefGoogle Scholar
  26. 13.(a)
    Cottam, B.-F.; Krishnadasan, S.; deMello, A. J.; deMello, J. C.; Shaffer, M. S. P. Lab Chip 2007, 7, 167CrossRefGoogle Scholar
  27. 13.(b)
    (b) Khan, S. A.; Jensen, K. F. Adv. Mater. 2007, 19, 2556.CrossRefGoogle Scholar
  28. 14.
    Kim, C.-S.; Moon, B. K.; Park, J.-H.; Choi, B.-C.; Seo, H.-J. J. Cryst. Growth 2003, 257, 309.CrossRefGoogle Scholar
  29. 15.(a)
    Jun, J. W.; Jung, Y.-Y.; Cheon, J. J. Am. Chem. Soc. 2001, 124, 615CrossRefGoogle Scholar
  30. 15.(b)
    Nguyen, T. D.; Mrabet, D.; Do, T.-O. J. Phys. Chem. C 2008, 112, 15226.CrossRefGoogle Scholar
  31. 16.
    Dinh, C.-T.; Nguyen, T.-D.; Kleitz, F.; Do, T.-O. ACS Nano 2009, 3, 3737.CrossRefGoogle Scholar
  32. 17.
    Lohse, S. E.; Murphy, C. J. J. Am. Chem. Soc. 2012, 134, 15607.CrossRefGoogle Scholar
  33. 18.(a)
    Ju, X.; Li, D.; Li, W.; Ya, W.; Biana F. Adv. Synth. Catal. 2012, 354, 3561. For similar reactions seeCrossRefGoogle Scholar
  34. 18.(b)
    Marinkovic, S.; Hoffmann, N. Chem. Commun. 2001, 1576Google Scholar
  35. 18.(c)
    Marinkovic, S.; Hoffmann, N. Internat. J. Photoenergy 2003, 5, 175CrossRefGoogle Scholar
  36. 18.(d)
    Marinkovic, S.; Hoffmann, N. Eur J. Org. Chem. 2004, 3102.Google Scholar
  37. 19.
    For a recent overview on continuous-flow photochemistry, see: (a) Knowles, J. P.; Elliot, L. D.; Booker-Millburn, K. I. Beilstein J. Org. Chem. 2012, 8, 2025CrossRefGoogle Scholar
  38. 19.(b)
    Oelgemoeller, M. Chem. Eng. Technol. 2012, 35, 1144.CrossRefGoogle Scholar
  39. 20.
    Forsimilarreactorsetup, see: Huvaere, K. Green Process Synth. 2012, 1, 533.Google Scholar
  40. 21.(a)
    Roy, B.; Swan, G. A. J. Chem. Soc. C 1969, 1886Google Scholar
  41. 21.(b)
    Murata, S.; Teramoto, K.; Miura, M.; Nomura, M. Heterocycles 1993, 9, 2147.Google Scholar

Copyright information

© Akadémiai Kiadó 2013

Authors and Affiliations

  • Mostafa Baghbanzadeh
    • 1
  • Toma N. Glasnov
    • 1
  • C. Oliver Kappe
    • 1
    • 2
    Email author
  1. 1.Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of ChemistryUniversity of GrazGrazAustria
  2. 2.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations