Advertisement

Journal of Flow Chemistry

, Volume 3, Issue 3, pp 92–98 | Cite as

Study of Microfocusing Potentialities to Improve Bioparticle Separation Processes: Towards an Experimental Approach

  • Christine Lafforgue-Baldas
  • Pascale Magaud
  • Philippe Schmitz
  • Zhang Zhihao
  • Sandrine Geoffroy
  • Micheline Abbas
Full Paper

Abstract

This work concerns the separation of a mixture of bi-dispersed spherical micro-particles by lateral migration at moderate Reynolds numbers. The expected differential focalization on annular rings of particles flowing in a circular micro-channel according to their size could be of interest for separation processes of poly-dispersed bio-particles suspensions. We propose an original and simple experimental method to study fluorescent particle migration at the microscale which is based on an indirect visualization of their position in a micro-channel. The particles are harvested on a plane filtration membrane put perpendicularly at the outlet of the channel. Their distribution on the membrane is then observed by fluorescent microscopy. A numerical simulation (COMSOL Multiphysics®) was developed to study the influence of membrane permeability and channel/membrane relative positions on the flow streamlines and on the subsequent size of the annular ring formed on the membrane by the focused particles. First experiments have been performed with suspensions of 1 and 4.8 μm diameter particles in order to correlate their positions to experimental conditions.

Keywords

particle migration focusing microfiltration fluorescence microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mota, M.; Teixeira, J.A.; Yelshin, A. Sep. Purif. Technol. 2002, 27, 137–144.CrossRefGoogle Scholar
  2. 2.
    Zhang, Y.P.; Fane, A.G.; Law, A.W. K.J.Membr. Sci. 2006, 282, 189–197.CrossRefGoogle Scholar
  3. 3.
    Foley, G. J. Membr. Sci. 2006, 274, 38–46.CrossRefGoogle Scholar
  4. 4.
    Beaufort, S.; Alfenore, S.; Lafforgue, C. J. Membr. Sci. 2011, 369, 1–2, 30–39.CrossRefGoogle Scholar
  5. 5.
    Altena, F.; Belfort, G. Chem. Eng. Sci. 1984, 39, 343–355.CrossRefGoogle Scholar
  6. 6.
    Segré, G.; Silberberg, A. J. Fluid Mech. 1962, 4, 136–157.CrossRefGoogle Scholar
  7. 7.
    Matas, J. P.; Morris, J. F.; Guazzelli, E. IFP, Institut Français du Pétrole. 2004, 59, 59–70.Google Scholar
  8. 8.
    Bhagat, A. A. S.; Kuntaegowdanahalli, S. S.; Papautsky, I. Microfluid. Nanofluid. 2009, 7, 217–226.CrossRefGoogle Scholar
  9. 9.
    Di Carlo, D.; Irimia, D.; Tompkins, R. G.; Toner, M. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18892.CrossRefGoogle Scholar
  10. 10.
    Magaud, P.; Geoffroy, S.; Colin, S.; Baldas, L. 2nd European Conference on Microfluidics, Toulouse, μFLU2010, 2010, 1–13.Google Scholar
  11. 11.
    Günther, J.; Schmitz, P.; Albasi, C.; Lafforgue, C. J. Membr. Sci. 2010, 348, 277–286.CrossRefGoogle Scholar
  12. 12.
    Schmitz, P.; Prat, M. AIChE J. 1995, 41, 2212–2226.CrossRefGoogle Scholar
  13. 13.
    Elimelech, M. Particle Deposition and Aggregation: Measurement, Model-ling and Simulation, Colloid and Surface Engineering Series, 1995, Elsevier.Google Scholar
  14. 14.
    Di Carlo D.; Edd, J. F.; Humphry, K. J.; Stone, H. A.; Toner, M. Phys. Rev. Lett. 2009, 102, 094503.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2013

Authors and Affiliations

  • Christine Lafforgue-Baldas
    • 1
    • 2
    • 3
  • Pascale Magaud
    • 4
  • Philippe Schmitz
    • 1
    • 2
    • 3
  • Zhang Zhihao
    • 1
    • 2
    • 3
  • Sandrine Geoffroy
    • 4
  • Micheline Abbas
    • 5
  1. 1.Université de Toulouse, INSA, UPS, INP; LISBPToulouseFrance
  2. 2.INRAUMR792 Ingénierie des Systèmes Biologiques et des ProcédésToulouseFrance
  3. 3.CNRSUMR5504ToulouseFrance
  4. 4.Institut Clément AderINSAToulouseFrance
  5. 5.Laboratoire de Génie Chimique, UMR 5503, BP 84234Campus INP-ENSIACETToulouse cedex 4France

Personalised recommendations