Journal of Flow Chemistry

, Volume 3, Issue 3, pp 76–80 | Cite as

Microfluidic Solvent Extraction of Metal Ions from Industrial Grade Leach Solutions: Extraction Performance and Channel Aging

  • Craig Priest
  • Syed F. Hashmi
  • Jingfang Zhou
  • Rossen Sedev
  • John Ralston
Full Paper


Microfluidic solvent extraction (microSX) of metal ions from industrial grade mineral leach solutions was studied. In conventional bulk-scale SX, partially hydrophobic nanoparticles that are present in the leach solution readily adsorb at the liquid-liquid interface of the dispersed droplets, causing delayed or incomplete phase separation and reduce efficiency. In contrast, microSX employs continuous microscopic streams of aqueous and organic phases (without mixing the phases) and, in this way, bypasses the need for a conventional phase separation stage. This makes the technique promising for handling complex leach solutions. The stability of the two-phase flow is considered in terms of the surface wettability and guiding geometry of the microchannel, which determines the Laplace pressure window that stabilizes the liquid-liquid interface. We show that careful characterization of the microchannel wettability, including contact angle hysteresis, is essential to predict long-term flow stability.


solvent extraction mineral processing multiphase microfluidics wettability nanoparticles 


  1. 1.
    Brody, J. P.; Yager, P. Sensor Actuat. A: Phys. 1997, 58, 13–18.CrossRefGoogle Scholar
  2. 2.
    Aota, A.; Nonaka, M.; Hibara, A.; Kitamori T. Angew. Chem. Int. Ed. 2006, 45, 1.Google Scholar
  3. 3.
    Kralj, J. G.; Sahoo, H. R.; Jensen, K. F. Lab Chip 2007, 7, 256.CrossRefGoogle Scholar
  4. 4.
    Kralj, J. G.; Schmidt, M. A.; Jensen, K. F. Lab Chip 2005, 5, 531.CrossRefGoogle Scholar
  5. 5.
    Minagawa, T.; Tokeshi, M.; Kitamori, T. Lab Chip 2001, 1, 72.CrossRefGoogle Scholar
  6. 6.
    Priest, C.; Zhou, J.; Klink, S.; Sedev, R.; Ralston, J. Chem. Eng. Technol. 2012, 35, 1312–1319.CrossRefGoogle Scholar
  7. 7.
    Priest, C.; Zhou J.; Sedev, R.; Ralston, J.; Aota, A.; Mawatari K.; Kitamori T. Int. J. Min. Process. 2011, 98, 168–173.CrossRefGoogle Scholar
  8. 8.
    Tokeshi, M.; Minagawa, T.; Kitamori, T. Anal. Chem. 2000, 72, 1711–1714.CrossRefGoogle Scholar
  9. 9.
    Mary, P.; Studer, V.; Tabeling, P. Anal. Chem. 2008, 80, 2680.CrossRefGoogle Scholar
  10. 10.
    Günther, A.; Jhunjhunwala, M.; Thalmann, M.; Schmidt, M. A.; Jensen, K. F. Langmuir 2005, 21, 1547–1555.CrossRefGoogle Scholar
  11. 11.
    Aveyard, R.; Binks, B. P.; Clint, J. H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 2003, 100–102, 503.CrossRefGoogle Scholar
  12. 12.
    Coulson, J. M.; Richardson, J. F.; Backhurst, J. R.; Harker, J. H. Particle Technology and Separation Processes, edition 4, Oxford: Butterworth-Heinemann, 1996; 2.Google Scholar
  13. 13.
    Fernelius, W. C.; Blanch, J. E. Inorg. Synth. 1957, 5, 130.Google Scholar
  14. 14.
    Klink, S.; Priest, C.; Ralston, J.; Sedev, R.; Mawatari, K.; Kitamori, T. Selective Two-Phase Mineral Separation on a Microfluidic Chip. The 12th Inter-national Conference on Miniaturized Systems for Chemistry and Life Sciences 2008, San Diego, USA.Google Scholar
  15. 15.
    Sato, K.; Hibara, A.; Tokeshi, M.; Hisamoto, H.; Kitamori, T. Adv. Drug Deliv. Rev. 2003, 55, 379–391.CrossRefGoogle Scholar
  16. 16.
    Cognis Group. MCT Redbook: Solvent Extraction Reagents and Applications, 2007.Google Scholar
  17. 17.
    Forsberg, P. S. H.; Priest, C.; Brinkmann, M.; Sedev, R.; Ralston, J. Langmuir 2010, 26, 860.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2013

Authors and Affiliations

  • Craig Priest
    • 1
  • Syed F. Hashmi
    • 1
  • Jingfang Zhou
    • 1
  • Rossen Sedev
    • 1
  • John Ralston
    • 1
  1. 1.Ian Wark Research InstituteUniversity of South AustraliaMawson LakesAustralia

Personalised recommendations