Journal of Flow Chemistry

, Volume 3, Issue 2, pp 46–50 | Cite as

Fluoroalkynylations of Aryl Halides under Continuous-Flow Homogeneous Catalysis

  • Michael S. Placzek
  • Jessica M. Chmielecki
  • Connor Houghton
  • Alyssa Calder
  • Charlotte Wiles
  • Graham B. Jones
Full Paper


Continuous-flow methodologies have been applied to the synthesis of a number of fluorinated alkynyl arenes and heteroarenes. Through a series of optimizations reagent stoichiometry and reaction time were improved and substrate specificity was interrogated. Using optimized conditions under copper-free Sonogashira type couplings readily available arene building blocks were derivatized with fluoroalkynyl side chains in <10 min. Given the rapidity of the process and the enhanced purity profile of the products an immediate application of the work is in the development of 18F labeled versions of the agents for subsequent use in positron emission tomography (PET) imaging. A homolog of the Alzheimer’s disease imaging agent Fallypride® was prepared using the methodology and additional analogs was identified.


flow chemistry microfluidics fluorine positron emission tomography Sonogashira coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

41981_2013_3020046_MOESM1_ESM.pdf (646 kb)
Supplementary material, approximately 661 KB.

5. References

  1. 1.
    Filler, R.; Saha, R. Future Med. Chem. 2009, 5, 777–791.CrossRefGoogle Scholar
  2. 2.
    Kallmerten, A. E.; Alexander, A.; Wager, K.; Jones, G. B. Cum Radio-pharm. 2011, 4, 343–354.Google Scholar
  3. 3.
    LaBeaume, P.; Placzek, M.; Daniels, M.; Kendrick, I.; Ng, P.; McNeel, M.; Afroze, R.; Alexander, A.; Thomas, R.; Kallmerten, A. E.; Jones, G. B. Tetrahedron Lett. 2010, 51, 1906–1909.CrossRefGoogle Scholar
  4. 4.
    Sadler, S.; Moeller, A. R.; Jones, G. B. Expert Opin. Drug Dis. 2012, 12, 1107–1128.CrossRefGoogle Scholar
  5. 5.
    Lu, S.; Giamis, A. M.; Pike, V. W. Curr. Radiopharm., 2009, 2, 49–55.CrossRefGoogle Scholar
  6. 6.
    Bouvet, V. R.; Wuest, M.; Wiebe, L. I.; Wuest, F. Nucl. Med. Biol. 2010, 38, 235–245.CrossRefGoogle Scholar
  7. 7.
    Placzek, M.; LaBeaume, P.; Harris, L.; Ng, P.; Daniels, M.; Kallmerten, A.; Jones, G. B. Tetrahedron Lett. 2011, 52, 332–335.CrossRefGoogle Scholar
  8. 8.
    Wei, Z. L.; Xiao, Y.; Yuan, H.; Baydyuk, M.; Petukhov, P. A.; Musachio, J. L.; Kellar, K.; Kozikowski, A. P. J. Med. Chem. 2005, 48, 1721–1724.CrossRefGoogle Scholar
  9. 9.
    Kim, D. W.; Jeong, H.; Lim, S. T.; Sohn, M.; Katzenellenbogen, J. A.; Chi, D. Y. Org. Chem. 2008, 73, 957–962.CrossRefGoogle Scholar
  10. 10.
    Noël, T.; Buchwald, S. Chem. Soc. Rev. 2011, 40, 5010–5029.CrossRefGoogle Scholar
  11. 11.(a)
    Kawanami, H.; Matsushima, K.; Sato, M.; Ikushima, Y. Angew. Chem. Int. Ed. 2007, 46, 5129–5132CrossRefGoogle Scholar
  12. (b).
    Javaid, R.; Kawanami, H.; Chatterjee, M.; Ishizaka, T.; Suzuki, A.; Suzuki, T. M. Chem. Eng. J. 2011, 167, 431–435CrossRefGoogle Scholar
  13. (c).
    Fukuyama, T.; Shinmen, M.; Nishitani, S.; Sato, M.; Ryu, I. Org. Lett. 2002, 4, 1691–1694CrossRefGoogle Scholar
  14. (d).
    Zhang, Y.; Jamison, T. F.; Patel, S.; Mainolff, N. Org. Lett. 2011, 13, 280–283.CrossRefGoogle Scholar
  15. 12.(a)
    Leadbeater, N. E.; Tominack, B. J. Tetrahedron Lett. 2003, 44, 8653–8656CrossRefGoogle Scholar
  16. (b).
    Kawanami, H.; Matsushima, K.; Sato, M.; Ikushima, Y. Angew. Chem. Int. Ed. 2007, 119, 5221–5224.CrossRefGoogle Scholar
  17. 13.
    Urgaonkar, S.; Verkade, J. J. Org. Chem. 2004, 69, 5752–5755.CrossRefGoogle Scholar
  18. 14.(a)
    Hartman, L. R. Org. Process Res. Dev. 2012, 16, 870–887CrossRefGoogle Scholar
  19. (b).
    Kuhn, S.; Noël, T.; Gu, L.; Heider, P. L.; Jensen, K. F. Lab Chip. 2011, 11, 2488–2492CrossRefGoogle Scholar
  20. (c).
    Noël, T.; Naber, J. R.; Hartman, R. L.; McMullen, J. P.; Jensen, K. F.; Buchwald, S. L. Chem. Sci. 2011, 2, 287–290.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2013

Authors and Affiliations

  • Michael S. Placzek
    • 1
  • Jessica M. Chmielecki
    • 1
  • Connor Houghton
    • 1
  • Alyssa Calder
    • 1
  • Charlotte Wiles
    • 2
  • Graham B. Jones
    • 1
  1. 1.Biorganic and Medicinal Chemistry Laboratories, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonUSA
  2. 2.Chemtrix BVGeleenThe Netherlands

Personalised recommendations