Journal of Flow Chemistry

, Volume 3, Issue 2, pp 34–40 | Cite as

Continuous-Flow Microfluidic Electrochemical Synthesis: Investigating a New Tool for Oxidative Chemistry

  • Gregory P. Roth
  • Romain Stalder
  • Toby R. Long
  • Daryl R. Sauer
  • Stevan W. Djuric
Full Paper


A continuous-flow microfluidic electrochemical device (Flux Module) has been designed and evaluated as a practical new laboratory tool to facilitate electrochemical synthetic transformations. Four- and six-electron benzylic oxidations are reported to illustrate the utility afforded by a unique route of synthesis using this technology. Through the utilization of an electron-rich substrate (p-methoxytoluene), a continuous-flow electrochemical oxidation process was optimized. Using a general continuous-flow protocol, a series of diverse tolyl-based substrates were evaluated and the resulting data are reported. The Flux Module results were correlated with the oxidation potential of each substrate as measured by cyclic voltammetry. This established a trend regarding the nature of available oxidation product profiles using this synthesis platform.


microfluidics electrochemistry continuous-flow electrochemistry electrolyte-free synthesis benzylic oxidation 

Supplementary material

41981_2013_3020034_MOESM1_ESM.pdf (4.7 mb)
Supplementary material, approximately 4920 KB.


  1. 1.(a)
    Bochet, C. G.; Blanc, A. Photolabile Protecting Croups in Organic Synthesis. In Handbook of Synthetic Photochemìstry; Albini, A.; Fagnoni, M., Eds.; Wiley-VCH: Weinheim, 2010; 417–447Google Scholar
  2. (b).
    Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108, 2265–2299CrossRefGoogle Scholar
  3. (c).
    Patel, V. K.; Sen, D. J.; Patel, H. U.; Patel, C. N. J. Chem. Pharm. Res. 2010, 2, 573–580.Google Scholar
  4. 2.(a)
    Booker-Milburn, K. Nat. Chem. 2012, 4, 433–435CrossRefGoogle Scholar
  5. (b).
    Longstreet, A. R.; McQuade, D. T. Ace. Chem. Res., Article ASAP, doi:10.1021/ar300144xCrossRefGoogle Scholar
  6. (c).
    Yoshida, J.-L; Suga, S. Chem. Eur J. 2002, 8, 2650–2658CrossRefGoogle Scholar
  7. (d).
    Loewe, H.; Ehrfeld, W. Electrochim. Acta, 1999, 44, 3679–3689.CrossRefGoogle Scholar
  8. 3.(a)
    Pütter, H. Industriai Electroorganic Chemistry, édition 4; Marcel Dekker: New York, 2001Google Scholar
  9. (b).
    Ziogas, A.; Kolb, G.; O’Connell, M.; Attour, A.; Lapicque, F.; Matlosz, M.; Rode, S. J. Appl. Electrochem. 2009, 39, 2297–2313.CrossRefGoogle Scholar
  10. 4.
    Rode, S.; Lapicque, F. Microstructured Reactors for Electrochemical Synthesis. In Micro Process Engineering, Vol. 1: Fundamentals, Operations, and Catalysts; Hessel, V.; Renken, J. C.; Yoshida, J.-I., Eds.; Wiley-VCH KGaA: Weinheim, 2009.Google Scholar
  11. 5.(a)
    Hoormann, D.; Kubon, C.; Jörissen, J.; Kröner, L.; Pütter, H. J. Electroanal. Chem. 2001, 507, 215–225CrossRefGoogle Scholar
  12. (b).
    Horcajada, R.; Okajima, M.; Suga, S.; Yoshida, J.-L Chem. Commun. 2005, 1303–1305Google Scholar
  13. (c).
    Kataoka, K.; Hagiwara, Y; Midorikawa, K.; Suga, S.; Yoshida, J.-I. Org. Process Res. Dev. 2008, 12, 1130–1136CrossRefGoogle Scholar
  14. (d).
    Horii, D.; Atobe, M.; Fuchigami, T.; Marken, F. J. Electrochem. Soc. 2006, 153, D143–D147CrossRefGoogle Scholar
  15. (e).
    Paddon, C. A.; Pritchard, G. I.; Thiemann, T.; Marken, F. Electrochem. Commun. 2002, 4, 825–831CrossRefGoogle Scholar
  16. (f).
    Hori, D.; Fuchigami, T.; Atobe, M. J. Am. Chem. Soc. 2007, 129, 11692–11693CrossRefGoogle Scholar
  17. (g).
    Watts, K.; Gattrell, W; Wirth, T. Beilstein J. Org. Chem. 2011, 7, 1108–1114CrossRefGoogle Scholar
  18. (h).
    Suga, S.; Okajima, M.; Fujiwara, M.; Yoshida, J. J. Am. Chem. Soc. 2001, 123, 7941–7942CrossRefGoogle Scholar
  19. (i).
    C. Karakus, C.; Zuman, P. J. J. Electrochem. Soc. 1995, 142, 4018–4025.CrossRefGoogle Scholar
  20. 6.
    For further détails on the Flux Module reactor, see Syrris Ltd., 27 Jarman Way, Royston, Hertfordshire SG8 5HW, United Kingdom 01763 242555
  21. 7.
    Utley, J. Chem. Soc. Rev. 1997, 26, 157–167.CrossRefGoogle Scholar
  22. 8.
    Kawabata, J.; Nozawa, K.; Kawai, K.; Nakajima, S. Liebigs Ann. Chem. 1960, 2, 181–183.Google Scholar
  23. 9.
    Konno, A.; Fuchigami, T. J. Appl. Electrochem. 1995, 25, 173–175.CrossRefGoogle Scholar
  24. 10.
    Nematollahi, D.; Tammari, E. J. Org. Chem. 2005, 70, 7769–7772.CrossRefGoogle Scholar
  25. 11.
    Maeda, G.; Ashie, H.; Maki, T.; Ohmori, H. Chem. Pharm. Bull. 1997, 45, 1729–1733.CrossRefGoogle Scholar
  26. 12.
    Hirashima, T.; Nishiguchi, I. J. Org. Chem. 1985, 50, 539–541.CrossRefGoogle Scholar
  27. 13.
    Brinkhaus, K.-H. G.; Steckhan, E. Tetrahedron 1986, 42, 553–560.CrossRefGoogle Scholar
  28. 14.(a)
    Utley, J. H. P.; Rosenberg, G. G. Tetrahedron 2002, 58, 5251–5265CrossRefGoogle Scholar
  29. (b).
    Barba, I.; Alonso, F. J. Org. Chem. 1989, 54, 4365–4367CrossRefGoogle Scholar
  30. (c).
    Barba, I.; Gómez, C.; Chinchilla, R. J. Org. Chem. 1990, 55, 3272–3273.CrossRefGoogle Scholar
  31. 15.
    Bard, A. J.; Faulkner, L. R. Electrochemical Methods. Fundamentals and Applications, édition 2; Wiley: New York, 2001.Google Scholar
  32. 16.
    Arnold, D. R.; Du, X.; Henselheit, K. M. Can. J. Chem. 1991, 69, 839–852.CrossRefGoogle Scholar
  33. 17.
    Pavlishchuk, V. V.; Addison, A. W. Addison. Inorg. Chim. Acta 2000, 298, 97–102.CrossRefGoogle Scholar
  34. 18.
    Rees, N. V.; Klymenko, O. V.; Compton, R. G.; Oyama, M. J. Electroanal. Chem. 2002, 531, 33–42.CrossRefGoogle Scholar
  35. 19.(a)
    Hermeling, D.; Harreus, A.; Wild, J.; Goetz, N. U.S. Patent 5,078,838, Jan 7, 1992Google Scholar
  36. (b).
    Stecker, F.; Griesbach, U.; Bock, M.; Koenigsmann, L. U.S. Patent 2011/0207968 Al, Aug 25, 2011.Google Scholar

Copyright information

© Akadémiai Kiadó 2013

Authors and Affiliations

  • Gregory P. Roth
    • 1
  • Romain Stalder
    • 1
  • Toby R. Long
    • 1
  • Daryl R. Sauer
    • 2
  • Stevan W. Djuric
    • 2
  1. 1.Sanford-Burnham Medical Research Institute at Lake NonaOrlandoUSA
  2. 2.Medicinal Chemistry Technologies and Global External ResearchAbbVie LaboratoriesNorth ChicagoUSA

Personalised recommendations