Advertisement

Journal of Flow Chemistry

, Volume 3, Issue 2, pp 41–45 | Cite as

Biocatalyzed Acetins Production under Continuous-Flow Conditions: Valorization of Glycerol Derived from Biodiesel Industry

  • Ingrid C. R. Costa
  • Ivaldo ItabaianaJr.
  • Marcella C. Flores
  • Ana Clara Lourenço
  • Selma G. F. Leite
  • Leandro S. de M. e Miranda
  • Ivana C. R. Leal
  • Rodrigo O. M. A. de Souza
Full Paper

Abstract

The use of glycerol derived from biodiesel industry is an important development to add value to this actual waste. Several products can be obtained from glycerol, but acetins are very interesting molecules with a wide range of applications in pharmaceutical, cosmetics, food, and fuel industry. Herein we report our results on biocatalyzed batch and continuous-flow process for valorization of glycerol derived from biodiesel industry towards acetin production. Excellent results can be obtained with different selectivities depending on the nature of glycerol used and reaction conditions being able to produce monoacetin, diacetin, or triacetin depending on the reaction condition.

Keywords

flow chemistry lipases glycerol packed bed reactor acetins triacetin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. 1.
    Octave, S.; Thomas, D. Biochimie 2009, 91, 659.CrossRefGoogle Scholar
  2. 2.
    Lestari, S.; Maki-Arvela, P.; Beltramini, J.; Lu, G. Q. M.; Murzin, D. Y. ChemSusChem 2009, 2, 1109.CrossRefGoogle Scholar
  3. 3.
    Bozell, J. J. Clean: Soil Air Water 2008, 36, 641.Google Scholar
  4. 4.
    Zhou, J.; Zhang, J.; Guo, X.; Mao, J.; Zhang, S. Green Chem. 2012, 74, 156.CrossRefGoogle Scholar
  5. 5.
    Vila, F.; Lopez Granados, M.; Ojeda, M.; Fierro, J. L. G.; Mariscal, R. Catal. Today 2012, 187, 122.CrossRefGoogle Scholar
  6. 6.
    Jimenez-Morales, I.; Vila, F.; Mariscal, R.; Jimenez-Lopez, A. Appl. Catal. B 2012, 117, 253.CrossRefGoogle Scholar
  7. 7.
    Foskey, T. J. A.; Heinekey, D. M.; Goldberg, K. I. ACS Catal. 2012, 2, 1285.CrossRefGoogle Scholar
  8. 8.
    Zhu, S.; Zhu, Y; Hao, S.; Chen, L.; Zhang, B.; Li, Y. Catal. Lett. 2012, 142, 267.CrossRefGoogle Scholar
  9. 9.
    Nakagawa, Y; Ning, X.; Amada, Y; Tomishige, K. Appl. Catal. A 2012, 433, 128.CrossRefGoogle Scholar
  10. 10.
    Liu, L.; Zhang, Y; Wang, A.; Zhang, T. Chin. J. Catal. 2012, 33, 1257.CrossRefGoogle Scholar
  11. 11.
    Bozga, E. R.; Plesu, V.; Bozga, G.; Bildea, C. S.; Zaharia, E. Rev. Chini. 2011, 62, 646.Google Scholar
  12. 12.
    Shen, L.; Yin, H.; Wang, A.; Feng, Y; Shen, Y; Wu, Z.; Jiang, T. Chem. Eng. J. 2012, 180, 277.CrossRefGoogle Scholar
  13. 13.
    Patience, G. S.; Farrie, Y.; Devaux, J.-F.; Dubois, J.-L. Chem. Eng. Technol. 2012, 35, 1699.CrossRefGoogle Scholar
  14. 14.
    Park, D. S.; Kwak, B. K.; Kim, N. D.; Park, J. R.; Cho, J.-H.; Oh, S.; Yi, J. ChemCatChem 2012, 4, 836.CrossRefGoogle Scholar
  15. 15.
    Liu, L.; Ye, X. P.; Bozell, J. J. ChemSusChem 2012, 5, 1162.CrossRefGoogle Scholar
  16. 16.
    Haider, M. H.; Dummer, N. F.; Zhang, D.; Miedziak, P.; Davies, T. E.; Taylor, S. H.; Willock, D. J.; Knight, D. W.; Chadwick, D.; Hutchings, G. J. J. Catal. 2012, 286, 206.CrossRefGoogle Scholar
  17. 17.
    Selva, M.; Benedet, V.; Fabris, M. Green Chem. 2012, 14, 188.CrossRefGoogle Scholar
  18. 18.
    Li, L.; Koranyi, T. L.; Sels, B. F.; Pescarmona, P. P. Green Chem. 2012, 14, 1611.CrossRefGoogle Scholar
  19. 19.
    Royon, D.; Locatelli, S.; Gonzo, E. E. J. Supercrit. Fluids 2011, 58, 88.CrossRefGoogle Scholar
  20. 20.
    Vicente, G.; Melero, J. A.; Morales, G.; Paniagua, M.; Martin, E. Green Chem. 2010, 12, 899.CrossRefGoogle Scholar
  21. 21.
    Ferreira, P.; Fonseca, I. M.; Ramos, A. M.; Vital, J.; Castanheiro, J. E. Appl. Catal. B. 2010, 98, 94.CrossRefGoogle Scholar
  22. 22.
    Monbaliu, J.-C. M. R.; Winter, M.; Chevalier, B.; Schmidt, F.; Jiang, Y.; Hoogendoorn, R.; Kousemaker, M.; Stevens, C. V. Bioresour Technol. 2011, 102, 9304.CrossRefGoogle Scholar
  23. 23.
    Sato, S.; Sakai, D.; Sato, F.; Yamada, Y. Chem. Lett. 2012, 41, 965.CrossRefGoogle Scholar
  24. 24.
    Zhang, Z.; Xin, L.; Qi, J.; Wang, Z.; Li, W. Green Chem. 2012, 14, 2150.CrossRefGoogle Scholar
  25. 25.
    Fukuoka, T.; Habe, H.; Kitamoto, D.; Sakaki, K. J. Oleo Sci. 2011, 60, 369.CrossRefGoogle Scholar
  26. 26.
    Tudorache, M.; Protesescu, L.; Coman, S.; Parvulescu, V. I. Green Chem. 2012, 14, 478.CrossRefGoogle Scholar
  27. 27.
    Celli, A.; Marchese, P.; Sullalti, S.; Berti, C.; Barbiroli, G.; Commereuc, S.; Verney, V. Green Chem. 2012, 14, 182.CrossRefGoogle Scholar
  28. 28.
    Bensemhoun, J.; Condon, S. Green Chem. 2012, 14, 2595.CrossRefGoogle Scholar
  29. 29.
    Hu, S.; Luo, X.; Wan, C.; Li, Y. J. Agric. Food Chem. 2012, 60, 5915.CrossRefGoogle Scholar
  30. 30.
    Zorin, V. V.; Petukhova, N. I.; Shakhmaev, R. N. Russ. J. Gen. Chem. 2012, 82, 1013.CrossRefGoogle Scholar
  31. 31.
    Hernandez, K.; Garcia-Verdugo, E.; Porcar, R.; Fernandez-Lafuente, R. Enzyme Microb. Technol. 2011, 48, 510.CrossRefGoogle Scholar
  32. 32.
    Kayirhan, F.; Celebi, S. S. Biochem. Eng. J. 1998, 1, 153.CrossRefGoogle Scholar
  33. 33.
    Guit, R. P. M.; Kloosterman, M.; Meindersma, G. W.; Mayer, M.; Meijer, E. M. Biotechnol. Bioeng. 1991, 38, 727.CrossRefGoogle Scholar
  34. 34.
    Reddy, P. S.; Sudarsanam, P.; Raju, G.; Reddy, B. M. J. Ind. Eng. Chem. 2012, 18, 648.CrossRefGoogle Scholar
  35. 35.
    Wolfson, A.; Atyya, A.; Dlugy, C.; Tavor, D. Bioprocess Biosyst. Eng. 2010, 33, 363.CrossRefGoogle Scholar
  36. 36.
    Reddy, P. S.; Sudarsanam, P.; Raju, G.; Reddy, B. M. Catal. Commun. 2010, 11, 1224.CrossRefGoogle Scholar
  37. 37.
    Rezayat, M.; Ghaziaskar, H. S. Green Chem. 2009, 11, 710.CrossRefGoogle Scholar
  38. 38.
    Fukumura, T.; Toda, T.; Seki, Y.; Kubo, M.; Shibasaki-Kitakawa, N.; Yonemoto, T. Ind. Eng. Chem. Res. 2009, 48, 1816.CrossRefGoogle Scholar
  39. 39.
    Bonet, J.; Costa, J.; Sire, R.; Reneaume, J.-M.; Plesu, A. E.; Plesu, V.; Bozga, G. FoodBioprod. Process. 2009, 87, 171.CrossRefGoogle Scholar
  40. 40.
    Mêlera, J. A.; van Grieken, R.; Morales, G.; Paniagua, M. Energy Fuels 2007, 21, 1782.CrossRefGoogle Scholar
  41. 41.
    Pereira, V. L. P.; Meireles, B. A. J. Braz. Chem. Soc. 2013, 24, 17.CrossRefGoogle Scholar
  42. 42.
    Lokotsch, W.; Fritsche, K.; Syldatk, C. Appl. Microbiol. Biotechnol. 1998, 31, 467.Google Scholar
  43. 43.
    Ballot, C.; Favrebonvin, G.; WaËach, J. M. Anal. Leu. PartB 1982, 15, 1119.CrossRefGoogle Scholar
  44. 44.
    Elenskii, A. V.; Mazo, V. K.; Yampolskaya, G. P.; Izmailova, V. N.; Shaternikov, V. A. Vetn. Mosk. Univ. Ser 2: Khim. 1978, 19, 316.Google Scholar
  45. 45.
    Glasnov, T. N. J. Flow Chem. 2012, 2, 63.CrossRefGoogle Scholar
  46. 46.
    Glasnov, T. N. J. Flow Chem. 2012, 2, 108.CrossRefGoogle Scholar
  47. 47.
    Glasnov, T. N. J. Flow Chem. 2012, 2, 135.CrossRefGoogle Scholar
  48. 48.
    Junior, I. I.; Flores, M. C.; Sutili, F. K.; Leite, S. G. F.; e Miranda, L. S. d. M.; Leal, I. C. R.; de Souza, R. O. M. A. Org. Process Res. Dev. 2012, 16, 1098.CrossRefGoogle Scholar
  49. 49.
    Junior, I. I.; Flores, M. C.; Sutili, F. K.; Leite, S. G. F.; e Miranda, L. S. d. M.; Leal, I. C. R.; de Souza, R. O. M. A. J. Mol. Catal. B: Enzym. 2012, 77, 53.CrossRefGoogle Scholar
  50. 50.
    Goncalves, K. M.; Sutili, F. K.; Leite, S. G. F.; de Souza, R. O. M. A.; Ramos Leal, I. C. Ultrason. Sonochem. 2012, 19, 232.CrossRefGoogle Scholar
  51. 51.
    Matos, L. M. C.; Leal, I. C. R.; de Souza, R. O. M. A. J. Mol. Catal. B-Enzymatic 2011, 72, 36.CrossRefGoogle Scholar
  52. 52.
    Junior, I. I.; Sutili, F. K.; Leite, S. G. F.; e Miranda, L. S. d. M.; Leal, I. C. R.; de Souza, R. O. M. A. J. Mol. Catal. B: Enzym. 2011, 72, 313.CrossRefGoogle Scholar
  53. 53.
    Babicz, I.; Leite, S. G. F.; de Souza, R. O. M. A.; Antunes, O. A. C. Ultrason. Sonochem. 2010, 17, 4.CrossRefGoogle Scholar
  54. 54.
    de Souza, R. O. M. A.; Matos, L. M. C.; Goncalves, K. M.; Costa, I. C. R.; Babics, I.; Leite, S. G. F.; Oestreicher, E. G.; Antunes, O. A. C. Tetrahedron Lett. 2009, 50, 2017.CrossRefGoogle Scholar
  55. 55.
    de Souza, R. O. M. A.; Antunes, O. A. C.; Kroutil, W.; Kappe, C. O. J. Org. Chem. 2009, 74, 6157.CrossRefGoogle Scholar
  56. 56.
    Itabaiana, I.; Sutilli, F. K.; Leite, S. G. F.; Gonçalves, K. M.; Cordeiro, Y; Leal, I. C. R.; Miranda, L. S. M.; Ojeda, M.; Luque, R.; de Souza, R. O. M. A. Green Chem. 2013, 15, 518.CrossRefGoogle Scholar
  57. 57.
    Casas, A.; Ramos, M. J.; Perez, A.; Simon, A.; Lucas-Torres, C; Moreno, A. Fuel 2012, 92, 180.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2013

Authors and Affiliations

  • Ingrid C. R. Costa
    • 1
    • 2
  • Ivaldo ItabaianaJr.
    • 1
    • 3
  • Marcella C. Flores
    • 3
  • Ana Clara Lourenço
    • 2
  • Selma G. F. Leite
    • 2
  • Leandro S. de M. e Miranda
    • 1
  • Ivana C. R. Leal
    • 2
  • Rodrigo O. M. A. de Souza
    • 1
  1. 1.Biocatalysis and Organic Synthesis Group, Chemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Escola de QuímicaFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Faculdade de FarmáciaFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations