Journal of Flow Chemistry

, Volume 3, Issue 2, pp 51–58 | Cite as

Important Industrial Procedures Revisited in Flow: Very Efficient Oxidation and N-Alkylation Reactions with High Atom-Economy

  • Gellért Sipos
  • Viktor Gyollai
  • Tamás Sipőcz
  • György Dormán
  • László Kocsis
  • Richard V. Jones
  • Ferenc Darvas
Full Paper


The atom economy concept is one of the earliest recognition for green and sustainable aspects of organic synthesis. Over the years, novel technologies emerged that made this important feature of reactions into practice. Continuousflow devices increased the efficiency of the chemical transformations with novel process windows (high T, high p and heterogeneous packed catalysts etc.) and increased safety which turned the attention to reexamine old, industrial processes. Oxidation can be performed under flow catalytic conditions with molecular oxygen; alcohols can be oxidized to carbonyl compounds with high atom economy (AE=87 %). Using O2 and 1 % Au/TiO2, alcohol oxidation in flow was achieved with complete conversion and >90 % yield. N-alkylation is another good example for achieving high atom economy. Under flow catalytic conditions (Raney Ni), amines were successfully reacted with alcohols directly (AE=91 %) with >90 % conversion and selectivity. In both examples, the effective residence time was less than 1 min. These two examples demonstrate the significant contribution of flow technology to the realization of key principles in green and sustainable chemistry.


oxidation N-alkylation atom economy gas-liquid-solid flow reactors heterogenous catalysts 

Supplementary material

41981_2013_3020051_MOESM1_ESM.pdf (456 kb)
Supplementary material, approximately 467 KB.


  1. 1.
    Darvas, F.; Dormân, G.; Lengyel, L.; Kovâcs, L.; Jones, R.; Ürge, L. Chim. Oggi/Chem. Today 2009, 27, 40–43.Google Scholar
  2. 2.
    Trost, B. M. Science 1991, 254, 1471.CrossRefGoogle Scholar
  3. 3.
    Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300–2318.CrossRefGoogle Scholar
  4. 4.
    Trost, B. M. Ace. Chem. Res. 2002, 35, 695.CrossRefGoogle Scholar
  5. 5.
    Wegner, J.; Ceylan, S.; Kirschning, A. Chem. Commun. 2011, 47, 4583–4592.CrossRefGoogle Scholar
  6. 6.
    Li, C.-J.; Trost, B. M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 13197–13202.CrossRefGoogle Scholar
  7. 7.
    Jones, R.; Godorhazy, L.; Varga, N.; Szalay, D.; Urge, L.; Darvas, F. Comb. Chem. 2006, 8, 110–116.CrossRefGoogle Scholar
  8. 8.
    Leduc, A. B.; Jamison, T. F. Org. Process Rei. Dev. 2012, 16, 1082–1089.CrossRefGoogle Scholar
  9. 9.
    Matsumoto, T.; Ueno, M.; Wang, N.; Kobayashi, S. Chem. Asian J. 2008, 3, 196–214.CrossRefGoogle Scholar
  10. 10.
    Oxidation of Alcohols to Aldéhydes and Ketones: A Guide to Current Common Practices, Tojo, G., Fernandez, M., Eds.; Springer: Berlin, 2006.Google Scholar
  11. 11.
    Modem Heterogeneous Oxidation Catalysis. Mizuno, N., Ed; Wiley-VCH: Weinheim/New York, 2009.Google Scholar
  12. 12.
    Yamaguchi, K.; Mizuno, N. Chem. Eur. J. 2003, 9, 4353–4361.CrossRefGoogle Scholar
  13. 13.
    Zotova, N.; Hellgardt, K.; Kelsall, G. H.; Jessiman, A. S.; (Mimi) Hii, K. K. Green Chem. 2010, 12, 2157–2163.CrossRefGoogle Scholar
  14. 14.
    Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.CrossRefGoogle Scholar
  15. 15.
    Nomura, Y; Kawashita, Y; Hayashi, M. Heterocycles 2007, 74, 629–635.CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Bleloch, A.; Johnson, B. F. G.; Ley, S. V. et al. Chem. Commun. 1999, 8, 1907–1908.CrossRefGoogle Scholar
  18. 18.(a)
    The Organic Chemistry of Aliphatic Nitrogen Compounds. Brown, B. R., Ed.; Oxford, University Press: New York, 1994Google Scholar
  19. (b).
    March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, édition 6; Smith, M. B.; March, J., Eds.; Wiley: Hodoken, NJ, 2007Google Scholar
  20. 19.
    Grigg, R.; Mitchell, T. R. B.; Sutthivaiyakit, S.; Tongpenyai, N. J. Chem. Soc. Chem. Commun. 1981, 12, 611–612.CrossRefGoogle Scholar
  21. 20.
    Marsella, J. A. J. Org. Chem. 1987, 52, 467–468.CrossRefGoogle Scholar
  22. 21.
    Gnanamgari, D.; Sauer, E. L. O.; Schley, N. D.; Butler, C.; Incarvito, C. D.; Crabtree, R. H. Organometallics 2009, 28, 321–325.CrossRefGoogle Scholar
  23. 22.
    Tillack, A.; Hollmann, D.; Mevius, K.; Michalik, D.; Bahn, S.; Bélier, M. Eur. J. Org. Chem. 2008, 4745–4750.Google Scholar
  24. 23.
    Hamid, M. H. S. A.; Allen, C. L.; Lamb, G. W.; Maxwell A. C.; Maytum, H. C.; Watson, A. J. A.; Williams, J. M. J. J. Am. Chem. Soc. 2009, 131, 1166–1114CrossRefGoogle Scholar
  25. 24.
    Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. J. Org. Chem. 2011, 76, 2328–2331.CrossRefGoogle Scholar
  26. 25.
    Yamaguchi, K.; He, J. L.; Oishi T.; Mizuno, N. Chem. Eur. J. 2010, 16, 7199–7207.CrossRefGoogle Scholar
  27. 26.
    Jiang, Y-L.; Hu, Y.-Q.; Feng, S.-Q.; Wu, J. -S.; Wu, Z.-W.; et al. Synth. Commun. 1996, 26, 161–164.CrossRefGoogle Scholar
  28. 27.
    Zhang, Y.; Qi, X.; Cui, X.; Shi, F.; Deng Y. Tetrahedron Lett. 2011, 52, 1334–1338.CrossRefGoogle Scholar
  29. 28.
    Li, Q.; Fan, S.; Sun, Q.; Tian, H.; Yu, X.; Xu, Q. Org. Biomol. Chem. 2012, 10, 2966–2972.CrossRefGoogle Scholar
  30. 29.
    Su, F. Z.; He, L.; Ni, J.; Cao Y.; He, H. Y.; Fan, K. N. Chem. Commun. 2008, 3531.Google Scholar
  31. 30.
    He, L.; Lou, X.-B.; Ni, J.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Chem. Eur. J. 2010, 16, 13965–13969.CrossRefGoogle Scholar
  32. 31.
    Zotova, N.; Roberts, F. J.; Kelsall, G. H.; Jessiman, A. S.; Hellgardt, K.; (Mimi) Hii, K. K. Green Chem. 2012, 14, 226–232.CrossRefGoogle Scholar
  33. 32.
    Obermayer, D.; Balu, A. M.; Romero, A. A.; Goessler, W.; Luque, R.; Kappe, C. O. Green Chem. 2013, 15, 1530–1537.CrossRefGoogle Scholar
  34. 33.
    Ikawa, T.; Fujita, Y.; Tomoteru, M.; Sae, B., Haruki, T.; Tomohiro, M.; Yasunari M.; Hironao, S. Org. Biomol. Chem. 2012, 10, 293–304.CrossRefGoogle Scholar
  35. 34.
    Liu, Y.; Chen, W.; Feng, C.; Deng, G. Chem. Asian J. 2011, 6, 142–1146.Google Scholar
  36. 35.
    Taniguchi Y.; Horie, S.; Takaki, K.; Fujiwara, Y. J. Organomet. Chem. 1995, 504, 137–141.CrossRefGoogle Scholar
  37. 36.
    Aitken, D. J.; Beaufort, V.; Chalard, P.; Cladiere, J.-L.; Dufour, M.; Pereira, E.; Thery, V. Tetrahedron 2002, 5933–5940.Google Scholar
  38. 37.
    Bogdal, D.; Pielichowski, J.; Jaskot, K. Heterocycles 1997, 45, 715–722.CrossRefGoogle Scholar
  39. 38.
    Adkins, H.; Lester, G. L. J. Am. Chem. Soc. 1944, 296.Google Scholar

Copyright information

© Akadémiai Kiadó 2013

Authors and Affiliations

  • Gellért Sipos
    • 1
  • Viktor Gyollai
    • 1
  • Tamás Sipőcz
    • 1
  • György Dormán
    • 1
  • László Kocsis
    • 1
  • Richard V. Jones
    • 1
  • Ferenc Darvas
    • 1
  1. 1.ThalesNanoBudapestHungary

Personalised recommendations