Journal of Flow Chemistry

, Volume 2, Issue 4, pp 135–141 | Cite as

Highlights from the Flow Chemistry Literature 2012 (Part 3)

  • Toma N. Glasnov
Research Highlights


In this section of the journal, the continuous flow chemistry literature of the preceding months is presented. Included are articles published in the period July–September 2012. Some key examples are highlighted in the form of graphical abstracts. The remaining publications in the field are then listed ordered by journal name, with review articles grouped at the end.

Further Flow Chemistry Publications

  1. “Metal-free oxidative fluorination of phenols with [18 F]fluoride” Z. Gao, Y. H. Lim, M. Tredwell, L. Li, S. Verhoog, M. Hopkinson, W. Kaluza, T. L. Collier, J. Passchier, M. Huiban, V. Gouverneur Angewandte Chemie International Edition 2012, 51, 6733–6737CrossRefGoogle Scholar
  2. “Microfluidic control of the internal morphology in nanofiber-based macroscopic cables” D. Kiriya, R. Kawano, H. Onoe, S. Takeuchi Angewandte Chemie International Edition 2012, 51, 7942–7947CrossRefGoogle Scholar
  3. “Stereoselective chemoenzymatic synthesis of enantiopure 2-(1 H-imidazol-yl)cycloalkanols under continuous flow conditions” R. Porcar, V. Sans, N. Rios-Lombardia, V. Gotor-Fernandez, V. Gotor, M. I. Burguete, E. Garcia-Verdugo, S. V. Luis ACS Catalysis 2012, 2, 1976–1983CrossRefGoogle Scholar
  4. “A new flow methodology for the expedient synthesis of drug-like 3-aminoindolizines” P. P. Lange, A. R. Bogdan, K. Jamesa Advanced Synthesis and Catalysis 2012, 354, 2373–2379CrossRefGoogle Scholar
  5. “[18 F]FE@SNAP—a new PET tracer for the melanin concentrating hormone receptor 1 (MCHR1): Microfluidic and vessel-based approaches” C. Philippe, J. Ungersboeck, E. Schirmer, M. Zdravkovic, L. Nics, M. Zeilinger, K. Shanab, R. Lanzenberger, G. Karanikas, H. Spreitzer, H. Viernstein, M. Mitterhauser, W. Wadsak Bioorganic & Medicinal Chemistry 2012, 20, 5936–5940CrossRefGoogle Scholar
  6. “Heterogeneous enantioselective hydrogenation in a continuous flow fixed-bed reactor system: Hydrogenation of activated ketones and their binary mixtures on Pt-alumina-cinchona alkaloid catalysts” G. Szöllösi, Z. Makra, M. Fekete, F. Fülöp, M. Bartok Catalysis Letters 2012, 142, 889–894CrossRefGoogle Scholar
  7. “Zeolite capillary microreactor by flow synthesis method” G. Zhang, X. Zhang, J. Lv, H. Liu, J. Qiu, K. L. Yeung Catalysis Today 2012, 193, 221–225CrossRefGoogle Scholar
  8. “Continuous flow photocatalysis enhanced using an aluminum mirror: Rapid and selective synthesis of 20-deoxy and 20,30-dideoxynucleosides” B. Shen, M. W. Bedore, A. Sniady, T. F. Jamison Chemical Communications 2012, 48, 7444–7446CrossRefGoogle Scholar
  9. “Segmented flow synthesis of Ag nanoparticles in spiral microreactor: Role of continuous and dispersed phase” V. R. Kumar, B. L. V. Prasad, A. A. Kulkarni Chemical Engineering Journal 2012, 192, 357–368CrossRefGoogle Scholar
  10. “Microflow synthesis of saccharide nucleoside diphosphate with cross-coupling reactions of monophosphate components” K.-H. Chen, W.-F. Fang, Y.-T. Chen, J.-M. Fang, J.-T. Yang Chemical Engineering Journal 2012, 198-199, 33–37CrossRefGoogle Scholar
  11. “Synthesis of water-borne polymer nanoparticles in a continuous microreactor” K. Yadav, M. J. Barandiaran, J. C. de la Cal Chemical Engineering Journal 2012, 198-199, 191–200CrossRefGoogle Scholar
  12. “A novel vapor-liquid segmented flow based on solvent partial vaporization in microstructured reactor for continuous synthesis of nickel nanoparticles” C. Zeng, C. Wang, F. Wang, Y. Zhang, L. Zhang Chemical Engineering Journal 2012, 204-206, 48–53CrossRefGoogle Scholar
  13. “Microfluidic biosynthesis of silver nanoparticles: Effect of process parameters on size distribution” H. Liu, J. Huang, D. Sun, L. Lin, W. Lin, J. Li, X. Jiang, W. Wu, Q. Li Chemical Engineering Journal 2012, 209, 568–576CrossRefGoogle Scholar
  14. “Establishing a flow process to coumarin-8-carbaldehydes as important synthetic scaffolds” J. Zak, D. Ron, E. Riva, H. P. Harding, B. C. S. Cross, I. R. Baxendale Chemistry—A European Journal 2012, 18, 9901–9910CrossRefGoogle Scholar
  15. “Microreactor combinatorial system for nanoparticle synthesis with multiple parameters” K. Watanabe, Y. Orimoto, K. Nagano, K. Yamashita, M. Uehara, H. Nakamura, T. Furuya, H. Maeda Chemical Engineering Science 2012, 75, 292–297CrossRefGoogle Scholar
  16. “Oxidations with bonded salen-catalysts in microcapillaries” S. Sandel, S. K. Weber, O. Trapp Chemical Engineering Science 2012, 83, 171–179CrossRefGoogle Scholar
  17. “Production of hyaluronic acid (HA) nanoparticles by a continuous process inside microchannels: Effects of non-solvents, organic phase flow rate, and HA concentration” R. C. S. Bicudo, M. H. A. Santana Chemical Engineering Science 2012, 84, 134–141CrossRefGoogle Scholar
  18. “Simulation of a compact multichannel membrane reactor for the production of pure hydrogen via steam methane reforming” A. Vigneault, S. S. E. H. Elnashaie, J. R. Grace Chemical Engineering & Technology 2012, 35, 1520–1533CrossRefGoogle Scholar
  19. “Direct fluorination of 1,3-dicarbonyl compound in a continuous flow reactor at industrial scale” S. Elgue, A. Conte, C. Gourdon, Y. Bastard Chemistry Today 2012, 30, 18–21Google Scholar
  20. “Continuous synthesis ofperalkylated imidazoles and their transformation into ionic liquids with improved (electro) chemical stabilities” C. Maton, N. De Vos, B. I. Roman, E. Vanecht, N. R. Brooks, K. Binnemans, S. Schaltin, J. Fransaer, C. V. Stevens ChemPhysChem 2012, 13, 3146–3157CrossRefGoogle Scholar
  21. “Synthesis of Cu2ZnSnS4 micro- and nanoparticles via a continuous-flow supercritical carbon dioxide process” M. J. Casciato, G. Levitin, D. W. Hess, M. A. Grover ChemSusChem 2012, 5, 1186–1189CrossRefGoogle Scholar
  22. “Copper(I)-catalyzed azide-alkyne cycloadditions in microflow: Catalyst activity, high-t operation, and an integrated continuous copper scavenging unit” C. Varas, T. Noël, Q. Wang, V. Hessel ChemSusChem 2012, 5, 1703–1707CrossRefGoogle Scholar
  23. “Metal-free aerobic alcohol oxidation: Intensification under three-phase flow conditions” C. Aellig, D. Scholz, I. Hermans ChemSusChem 2012, 5, 1732–1736CrossRefGoogle Scholar
  24. “Continuous d-fructose dehydration to 5-hydroxymethylfurfural under mild conditions” C. Aellig, I. Hermans ChemSusChem 2012, 5, 1737–1742CrossRefGoogle Scholar
  25. “Single-step radiosynthesis of “18 F-labeled click synthons” from azide-functionalized diaryliodonium salts” J.-H. Chun, V. W. Pike European Journal of Organic Chemistry 2012, 4541-4547Google Scholar
  26. “Window of opportunity—potential of increase in profitability using modular compact plants and micro-reactor based flow processing” V. Gürsel, V. Hessel, Q. Wang, T. Noël, J. Lang Green Processing and Synthesis 2012, 1, 315–336CrossRefGoogle Scholar
  27. “Impact of the design and the materials of rectangular microchannel reactors on the photocatalytic decomposition of organic pollutant” G. Charles, T. Roques-Carmes, N. Becheikh, L. Falk, S. Corbel Green Processing and Synthesis 2012, 1, 363–374CrossRefGoogle Scholar
  28. “A pH-sensitive laser-induced fluorescence technique to monitor mass transfer in multiphase flows in microfluidic devices” S. Kuhn, K. F. Jensen Industrial & Engineering Chemistry Research 2012, 51, 8999–9006CrossRefGoogle Scholar
  29. “Controllable preparation of polyacrylamide hydrogel microspheres in a coaxial microfluidic device” B. Yang, Y. Lu, G. Luo Industrial & Engineering Chemistry Research 2012, 51, 9016–9022CrossRefGoogle Scholar
  30. “Continuous synthesis and in situ monitoring of biodiesel production in different microfluidic devices” L. M. Arias, P. F. Martins, A. L. J. Munhoz, L. Gutierrez-Rivera, R. M. Filho Industrial & Engineering Chemistry Research 2012, 51, 10755–10767CrossRefGoogle Scholar
  31. “Micromixing efficiency of a spinning disk reactor” N. C. Jacobsen, O. Hinrichsen Industrial & Engineering Chemistry Research 2012, 51, 11643–11652CrossRefGoogle Scholar
  32. “Continuous-flow synthesis of monoarylated acetaldehydes using aryldiazonium salts” N. Chernyak, S. L. Buchwald Journal of the American Chemical Society 2012, 134, 12466–12469CrossRefGoogle Scholar
  33. “Multiphase flow systems for selective aerobic oxidation of alcohols catalyzed by bimetallic nanoclusters” K. Kaizuka, K.-Y. Lee, H. Miyamura, S. Kobayashi Journal of Flow Chemistry 2012, 2, 1–4CrossRefGoogle Scholar
  34. “Phase-transfer catalysis under continuous flow conditions: An alternative approach to the biphasic liquid/liquid O-alkylation of phenols” D. De Zani, M. Colombo Journal of Flow Chemistry 2012, 2, 5–7CrossRefGoogle Scholar
  35. “Safe generation and synthetic utilization of hydrazoic acid in a continuous flow reactor” B. Gutmann, D. Obermayer, J.-P. Roduit, D. M. Roberge, C. O. Kappe Journal of Flow Chemistry 2012, 2, 8–19CrossRefGoogle Scholar
  36. “Acyl azide synthesis and curtius rearrangements in microstructured flow chemistry systems” H. Sprecher, M. N. P. Payan, M. Weber, G. Yilmaz, G. Wille Journal of Flow Chemistry 2012, 2, 20–23CrossRefGoogle Scholar
  37. “The effect of self-optimisation targets on the methylation of alcohols using dimethyl carbonate in supercritical CO2” D. N. Jumbam, R. A. Skilton, A. J. Parrott, R. A. Bourne, M. Poliakoff Journal of Flow Chemistry 2012, 2, 24–27CrossRefGoogle Scholar
  38. “Positron emission tomography radiosynthesis in microreactors” P. Watts, G. Pascali, P. A. Salvadori Journal of Flow Chemistry 2012, 2, 37–42CrossRefGoogle Scholar
  39. “User friendly and flexible Kiliani reaction on ketoses using microreaction technology” A. Cukalovic, J.-C. M. Monbaliu, G. J. Heynderickx, C. V. Stevens Journal of Flow Chemistry 2012, 2, 43–46CrossRefGoogle Scholar
  40. “Acetylation of alcohols and phenols using continuous-flow, tungstosilicic acid-supported, monolith microreactors with scale-up capability” P. He, S. J. Haswell, P. D. I. Fletcher, S. M. Kelly, A. Mansfield Journal of Flow Chemistry 2012, 2, 46–51CrossRefGoogle Scholar
  41. “Synthesis of juglone (5-hydroxy-1,4-naphthoquinone) in a falling film microreactor” O. Shvydkiv, C. Limburg, K. Nolan, M. Oelgemöller Journal of Flow Chemistry 2012, 2, 52–55CrossRefGoogle Scholar
  42. “Simplified mesofluidic systems for the formation of micron to millimeter droplets and the synthesis of materials” L. Steinbacher, Y. Lui, B. P. Mason, W. L. Olbricht, D. T. McQuade Journal of Flow Chemistry 2012, 2, 56–62CrossRefGoogle Scholar
  43. “Generation and reactions of vinyllithiums using flow microreactor systems” A. Nagaki, Y. Takahashi, S. Yamada, C. Matsuo, S. Haraki, Y. Moriwaki, S. Kim, J.-I. Yoshida Journal of Flow Chemistry 2012, 2, 70–72CrossRefGoogle Scholar
  44. “Diastereoselective [2+2] photocycloaddition of a chiral cyclohexenone with ethylene in a continuous flow microcapillary reactor” K. Terao, Y. Nishiyama, H. Tanimoto, T. Morimoto, M. Oelgemöller, K. Kakiuchi Journal of Flow Chemistry 2012, 2, 73–76CrossRefGoogle Scholar
  45. “A method to identify best available technologies (BAT) for hydrogenation reactors in the pharmaceutical industry” T. Van Le Doan, P. Stavarek, C. de Bellefon Journal of Flow Chemistry 2012, 2, 77–82CrossRefGoogle Scholar
  46. “Synthesis of fluorinated glycosyl amino acid building blocks for MUC1 cancer vaccine candidates by microreactor-assisted glycosylation” T. Oberbillig, H. Löwe, A. Hoffmann-Röder Journal of Flow Chemistry 2012, 2, 83–86CrossRefGoogle Scholar
  47. “Optimisation and scale-up of a-bromination of acetophenone in a continuous flow microreactor” R. Becker, S. A. M. W. van den Broek, P. J. Nieuwland, K. Koch, F. P. J. T. Rutjes Journal of Flow Chemistry 2012, 2, 87–91CrossRefGoogle Scholar
  48. “Controlled synthesis of silica capsules: Taming the reactivity of sicl4 using flow and chemistry” Z. Miller, J. L. Steinbacher, T. I. Houjeiry, A. R. Longstreet, K. L. Woodberry, B. F. Gupton, B. Chen, R. Clark, D. T. McQuade Journal of Flow Chemistry 2012, 2, 92–102CrossRefGoogle Scholar
  49. “Combinatorial synthesis of peptidomimetics using digital microfluidics” J. Jebrail, N. Assem, J. M. Mudrik, M. D. M. Dryden, K. Lin, A. K. Yudin, A. R. Wheeler Journal of Flow Chemistry 2012, 2, 103–107CrossRefGoogle Scholar
  50. “Direct fluorination of carbon monoxide in microreactors” W. Navarrini, F. Venturini, V. Tortelli, S. Basak, K. P. Pimparkar, A. Adamo, K. F. Jensen Journal of Fluorine Chemistry 2012, 142, 19–23CrossRefGoogle Scholar
  51. “Investigation of the mechanism of ozonolysis of (Z)-3-methyl-2-pentene using matrix isolation infrared spectroscopy” E. Coleman, B. S. Ault Journal of Molecular Structure 2012, 1031, 138–143CrossRefGoogle Scholar
  52. “A remote photochemical reaction for surface modification of polymeric substrate” C. Zhao, Z. Zhang, W. Yang Journal of Polymer Science Part A: Polymer Chemistry 2012, 50, 3698–3702CrossRefGoogle Scholar
  53. “Enzyme-catalyzed polymerization of end-functionalized polymers in a microreactor” S. Bhangale, K. L. Beers, R. A. Gross Macromolecules 2012, 45, 7000–7008CrossRefGoogle Scholar
  54. “Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions” J. D. Nguyen, E. M. D’Amato, J. M. R. Narayanam, C. R. J. Stephenson Nature Chemistry 2012, 4, 854–859CrossRefGoogle Scholar
  55. “A prototype continuous-flow liquid-liquid extraction system using open-source technology” M. O’Brien, P. Koos, D. L. Browne, S. V. Ley Organic & Biomolecular Chemistry 2012, 10, 7031–7036CrossRefGoogle Scholar
  56. “Rapid continuous synthesis of 50-deoxyribonucleosides in flow via Brønsted acid catalyzed glycosylation” B. Shen, T. F. Jamison Organic Letters 2012, 14, 3348–3351CrossRefGoogle Scholar
  57. “A “CatchReactRelease” method for the flow synthesis of 2-aminopyrimidines and preparation of the imatinib base” R. J. Ingham, E. Riva, N. Nikbin, I. R. Baxendale, S. V. Ley Organic Letters 2012, 14, 3920–3923CrossRefGoogle Scholar
  58. “Parallel microflow photochemistry: Process optimization, scale-up, and library synthesis” A. Yavorskyy, O. Shvydkiv, N. Hoffmann, K. Nolan, M. Oelgemöller Organic Letters 2012, 14, 4342–4345CrossRefGoogle Scholar
  59. “Automated multitrajectory method for reaction optimization in a microfluidic system using online IR analysis” J. S. Moore, K. F. Jensen Organic Process Research and Development 2012, 16, 1409–1415CrossRefGoogle Scholar
  60. “Nitration under continuous flow conditions: Convenient synthesis of 2-isopropoxy-5-nitrobenzaldehyde, an important building block in the preparation of nitro-substituted Hoveyda-Grubbs metathesis catalyst” P. Knapkiewicz, K. Skowerski, D. E. Jaskólska, M. Barbasiewicz, T. K. Olszewski Organic Process Research and Development 2012, 16, 1430–1435CrossRefGoogle Scholar
  61. “Continuous-flow preparation and use of ß-chloro enals using the Vilsmeier reagent” L. Pellegatti, S. L. Buchwald Organic Process Research and Development 2012, 16, 1442–1448CrossRefGoogle Scholar
  62. “Isoamyl acetate synthesis in imidazolium-based ionic liquids using packed bed enzyme microreactor” M. Cvjetko, J. Vorkapic-Furac, P. Znidarsic-Plazl Process Biochemistry 2012, 47, 1344–1350CrossRefGoogle Scholar
  63. “An efficient synthesis of 2-(trifluoromethyl)-2H-[1,3]oxazino[2,3-a]isoquinolines via a three-component cascade approach using a continuous-flow microreactor” M. Lei, W. Tian, R. Hu, H. Zhang Synthesis 2012, 44, 2519–2526CrossRefGoogle Scholar
  64. “Synthesis of an isoindoline-annulated, tricyclic sultam library via microwave-assisted, continuous-flow organic synthesis (MACOS)” F. Ullah, Q. Zang, S. Javed, P. Porubsky, B. Neuenswander, G. H. Lushington, P. R. Hanson, M. G. Organ Synthesis 2012, 44, 2547–2554CrossRefGoogle Scholar
  65. “100 Gram scale synthesis of a key intermediate of matrix metalloproteinase inhibitor in a continuous-flow system based on a copper-free Sonogashira reaction using an ionic liquid as a catalyst support” T. Fukuyama, M. T. Rahman, Y. Sumino, I. Ryu Synlett 2012, 23, 2279–2283CrossRefGoogle Scholar
  66. “4’-Methylbiphenyl-2-carbonitrile synthesis by continuous flow Suzuki-Miyaura reaction” O. D. Estrada, M. C. Flores, J. F. M. da Silva, R. O. M. A. de Souza, L. S. M. Miranda Tetrahedron Letters 2012, 53, 4166–4168CrossRefGoogle Scholar
  67. “Synthesis of thiol-capped gold nanoparticle with a flow system using organosilane as a reducing agent” A. Sugie, H. Song, T. Horie, N. Ohmura, K. Kanie, A. Muramatsu, A. Mori Tetrahedron Letters 2012, 53, 4457–4459CrossRefGoogle Scholar
  68. “A scalable approach to diaminopyrazoles using flow chemistry” S. Wilson, A. T. Osuma, J. A. Van Camp, X. Xu Tetrahedron Letters 2012, 53, 4498–4501CrossRefGoogle Scholar
  69. “Photodecarboxylative addition of carboxylates to phthalimides: A concise access to biologically active 3-(alkyl and aryl)methylene-1 H-isoindolin-1-ones” F. Hatoum, J. Engler, C. Zelmer, J. Wißen, C. A. Motti, J. Lex, M. Oelgemöller Tetrahedron Letters 2012, 53, 5573–5577CrossRefGoogle Scholar
  70. “Microflow photochemistry—a reactor comparison study using the photochemical synthesis of terebic acid as a model reaction” S. Aida, K. Terao, Y. Nishiyama, K. Kakiuchi, M. Oelgemöller Tetrahedron Letters 2012, 53, 5578–5581CrossRefGoogle Scholar
  71. “Hydrodechlorination reactions of CCl* over HZSM-5- and HY-supported Pt and Pd catalysts” A. Fasi, I. Hannus, J. Halasz, I. Palinko Topics in Catalysis 2012, 55, 853–857CrossRefGoogle Scholar


  1. “Overcoming the limitations of lithiation chemistry for organoboron compounds with continuous processing” Angewandte Chemie International Edition 2012, 51, 9223–9225CrossRefGoogle Scholar
  2. “Monitoring and control of microbioreactors: An expert opinion on development needs” K. V. Gernaey, F. Baganz, E. Franco-Lara, F. Kensy, U. Krühne, M. Luebberstedt, U. Marx, E. Palmqvist, A. Schmid, F. Schubert, F. Mandenius Biotechnology Journal 2012, 7, 1–7CrossRefGoogle Scholar
  3. “Sustainable, efficient and safe processes through the use of flow and catalytic reactions” D. Ager, P. Poechlauer Chemistry Today 2012, 30, 42–44Google Scholar
  4. “On-site-on demand production of hazardous chemicals by continuous flow processes” P. Poechlauer, S. Braune, B. Dielemans, B. Kaptein, R. Obermüller, M. Thathagar Chemistry Today 2012, 30, 51–54Google Scholar
  5. “Biofilms as living catalysts in continuous chemical syntheses” B. Halan, K. Buehler, A. Schmid Trends in Biotechnology 2012, 30, 453–465CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2012

Authors and Affiliations

  • Toma N. Glasnov
    • 1
  1. 1.Institute of ChemistryKarl-Franzens-University GrazGrazAustria

Personalised recommendations