Advertisement

Journal of Flow Chemistry

, Volume 2, Issue 4, pp 118–123 | Cite as

Multicapillary Flow Reactor: Synthesis of 1,2,5-Thiadiazepane 1,1-Dioxide Library Utilizing One-Pot Elimination and Inter-/Intramolecular Double aza-Michael Addition Via Microwave-Assisted, Continuous-Flow Organic Synthesis (MACOS)

  • Farman Ullah
  • Qin Zang
  • Salim Javed
  • Aihua Zhou
  • Christopher A. Knudtson
  • Danse Bi
  • Paul R. Hanson
  • Michael G. Organ
Full Paper
  • 6 Downloads

Abstract

A microwave-assisted, continuous-flow organic synthesis (MACOS) protocol for the synthesis of functionalized 1,2,5-thiadiazepane 1,1-dioxide library, utilizing a one-pot elimination and inter-/intramolecular double aza-Michael addition strategy is reported. The optimized protocol in MACOS was utilized for scale-out and further extended for library production using a multicapillary flow reactor. A 50-member library of 1,2,5-thiadiazepane 1,1-dioxides was prepared on a 100- to 300-mg scale with overall yields between 50 and 80% and over 90 % purity determined by proton nuclear magnetic resonance (1H-NMR) spectroscopy.

Keywords

double aza-Michael MACOS 1,2,5-thiadiazepane 1,1-dioxide library sultams 

Supplementary material

41981_2012_20400118_MOESM1_ESM.pdf (16 mb)
Supplementary material, approximately 16755 KB.

References and Notes

  1. 1.(a)
    Schreiber, S. L. Science 2000, 287, 1964–1969CrossRefGoogle Scholar
  2. (b).
    Burke, M. D.; Berger, E. M.; Schreiber, S. L. Science 2003, 302, 613–618CrossRefGoogle Scholar
  3. (c).
    Spring, D. R. Org. Biomol. Chem. 2003, 1, 3867–3870CrossRefGoogle Scholar
  4. (d).
    Tan, D. S. Nat. Chem. Biol. 2005, 1, 74–84CrossRefGoogle Scholar
  5. (e).
    Schreiber, S. L. Nature 2009, 457, 153–154CrossRefGoogle Scholar
  6. (f).
    Damdapani, S.; Marcaurelle, L. A. Curr. Opin. Chem. Biol. 2010, 14, 362–370CrossRefGoogle Scholar
  7. (g).
    Marcaurelle, L.A.; Comer, E.; Dandapani, S.; Duvall, J. R.; Gerard, B.; Esavan, S.; Lee, M. D.4t.; Liu, H.; Lowe, J. T.; Marie, J-C.; Mulrooney, C. A.; Pandya, B. A.; Rowley, A.; Ryba, T. D.; Suh, B-C.; Wie, J.; Young, D.; Akellam, L. B.; Ross, N. T.; Zhang, Y-L.; Fass, D. M.; Reis, S. A.; Zhao, W-N.; Haggarty, S. J.; Palmer, M..; Foley, M. A. J. Am. Chem. Soc. 2010, 132, 16962–16976.CrossRefGoogle Scholar
  8. 2.
    For a well-described and cost effective introduction to combinatorial chemistry see Terrett, N. K. Combinatorial Chemistry, Oxford University Press, 1998Google Scholar
  9. (b).
    Maclean, D.; Baldwin, J. J.; Ivanov, V. T.; Kato, Y.; Shaw, A.; Schenider, P.; Gordon, E. M. J. Comb. Chem. 2000, 2, 562–578.CrossRefGoogle Scholar
  10. 3.(a)
    Lebegue, N.; Gallet, S.; Flouquet, N.; Carato, P.; Pfeiffer, B.; Renard, P.; Léonce, S.; Pierré, A.; Chavatte, P.; Berthelot, P. J. Med. Chem. 2005, 48, 7363–7373CrossRefGoogle Scholar
  11. (b).
    Silvestri, R.; Marfè, G.; Artico, M.; La Regina, G.; Lavecchia, A.; Novellino, E.; Morgante, M.; Di Stefano, C.; Catalano, G.; Filomeni, G.; Abruzzese, E.; Ciriolo, M. R.; Russo, M. A.; Amadori, S.; Cirilli, R.; La Torre, F.; Salimei, P. S. J. Med. Chem. 2006, 49, 5840–5844CrossRefGoogle Scholar
  12. (c).
    Zhuang, L.; Wai, J. S.; Embrey, M. W.; Fisher, T. E.; Egbertson, M. S.; Payne, L. S.; Guare, J. P.; Vacca, J. P. Jr.; Hazuda, D. J.; Felock, P. J.; Wolfe, A. L.; Stillmock, K. A.; Witmer, M. V.; Moyer, G.; Schleif, W. A.; Gabryelski, L. J.; Leonard, Y. M.; Lynch, J. J.; Michelson, S. R. Jr.; Young, S. D. J. Med. Chem. 2003, 46, 453–456.CrossRefGoogle Scholar
  13. 4.(a)
    Plietker, B.; Seng, D.; Frohlich, R.; Metz, P. Tetrahedron 2000, 56, 873–879CrossRefGoogle Scholar
  14. (b).
    Metz, P.; Seng, D.; Frohlich, R. Synlett. 1996, 741–742Google Scholar
  15. (c).
    Greig, I.R.; Trozer, M. J.; Wright, P. T. Org. Lett. 2001, 3, 369–371.CrossRefGoogle Scholar
  16. 5.
    Enders, D.; Moll, A.; Bats, J. W. Eur. J. Org. Chem. 2006, 1271–1274.Google Scholar
  17. 6.(a)
    Rogachev, V. O.; Filimonov, V. D.; Fröhlich, R.; Kataeva, O.; Metz, P. Heterocycles 2006, 67, 589–595CrossRefGoogle Scholar
  18. (b).
    Rogatchov, V. O.; Bernsmann, H.; Schwab, P.; Fröhlich, R.; Wibbeling, B.; Metz, P. Tetrahedron Lett. 2002, 43, 4753–4756CrossRefGoogle Scholar
  19. (c).
    Chiacchio, U.; Corsaro, A.; Rescifina, A.; Bkaithan, M.; Grassi, G.; Piperno, A. Tetrahedron 2001, 57, 3425–3433.CrossRefGoogle Scholar
  20. 7.
    Ueda, M.; Miyabe, H.; Nishimura, A.; Miyata, O.; Takemoto, Y.; Naito, T. Org. Lett., 2003, 5 3835–3838.CrossRefGoogle Scholar
  21. 8.(a)
    Zhou, A.; Hanson, P. R. Org. Lett. 2008, 10, 2951–2954CrossRefGoogle Scholar
  22. 8.(b)
    Liu, X.- Y.; Li, C.-H.; Che, C.-M. Org. Lett. 2006, 8, 2707–2710CrossRefGoogle Scholar
  23. (c).
    Dauban, P.; Dodd, R. H. Org. Lett. 2000, 2, 2327–2329CrossRefGoogle Scholar
  24. (d).
    Dauban, P.; Saniere, L.; Aurelie, T.; Dodd, R. H. J. Am. Chem. Soc. 2001, 123, 7707–7708CrossRefGoogle Scholar
  25. (e).
    Sherman, E. S.; Chemler, S. R.; Tan, T. B.; Gerlits, O. Org. Lett. 2004, 6, 1573–1575CrossRefGoogle Scholar
  26. (f).
    Liang, J. -L.; Yuan, S.-X.; Chan, P. W. H.; Che, C.-M. Org. Lett. 2002, 4, 4507–4510CrossRefGoogle Scholar
  27. (g).
    Padwa, A.; Flick, A. C.; Leverett, C. A.; Stengel, T. J. Org. Chem. 2004, 69, 6377–6386CrossRefGoogle Scholar
  28. (h).
    Hopkins, M. J.; Hanson, P. R. Org. Lett. 2008, 10, 2223–2326CrossRefGoogle Scholar
  29. (i).
    Hanson, P. R.; Probst, D. A.; Robinson, R. E.; Yau, M. Tetrahedron Lett. 1999, 40, 4761–4764CrossRefGoogle Scholar
  30. (j).
    Merten, S.; Frohlich, R.; Kataeva, O. Adv. Synth. Catal. 2005, 347, 754–758CrossRefGoogle Scholar
  31. (k).
    Vasudevan, A.; Tseng, P.-S.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 8591–8593CrossRefGoogle Scholar
  32. (l).
    Rayabarapu, D. K.; Zhou, A.; Jeon, K. O.; Samarakoon, T.; Rolfe, A.; Siddiqui, H.; Hanson, P. R. Tetrahedron 2009, 65, 3180–3188CrossRefGoogle Scholar
  33. (m).
    Majumdar, K. C.; Mondal, S.; De, N. Synlett 2008, 2851–2855.Google Scholar
  34. 9.(a)
    For a review, see McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 104, 2239–2258CrossRefGoogle Scholar
  35. (b).
    Karsch, S.; Freitag, D.; Schwab, P.; Metz, P. Synthesis 2004, 1696–1712Google Scholar
  36. (c).
    Freitag, D.; Schwab, P.; Metz, P. Tetrahedron Lett. 2004, 45, 3589–3592CrossRefGoogle Scholar
  37. (d).
    Hanessian, S.; Sailes, H.; Therrien, E. Tetrhedron 2003, 59, 7047–7056.CrossRefGoogle Scholar
  38. 10.
    a) Organ, M. G.; Hanson, P. R.; Rolfe, A.; Samarakoon, T. B.; Ullah, F. J. Flow Chem. 2011, 1, 32–39CrossRefGoogle Scholar
  39. (b).
    Samarakoon, T. B.; Hur, M. Y.; Kurtz, R. D.; Hanson, P. R. Org. Lett. 2010, 12, 2182–2185CrossRefGoogle Scholar
  40. (c).
    Rolfe, A.; Samarakoon, T.B.; Hanson, P. R. Org. Lett. 2010, 12, 1216–1219.CrossRefGoogle Scholar
  41. 11.(a)
    Ullah, F.; Samarakoon, T. B.; Rolfe, A.; Kurtz, R. D.; Hanson, P. R.; Organ, M. G. Chem. Eur. J. 2010, 10959–10962Google Scholar
  42. (b).
    Rolfe, A.; Ullah, F.; Samarakoon, T. B.; Kurtz, R. D.; Porubsky, P.; Neunswander, B.; Lushington, G.; Santini, C.; Organ, M. G.; Hanson, P. R. ACS Combi. Sci. 2011, 13, 653658Google Scholar
  43. (c).
    Zhou, A.; Rayabarapu, D.; Hanson, P. R. Org. Lett. 2009, 11, 531–534.CrossRefGoogle Scholar
  44. 12.
    Rolfe, A.; Lushington, G. H.; Hanson, P. R. Org. Biomol. Chem., 2010, 8, 2198–2203.CrossRefGoogle Scholar
  45. 13.
    Zang, Q.; Javed, S.; Ullah, F.; Zhou, A.; Knudtson, C. A.; Bi, D.; Basha, F.Z.; Organ, M. G.; Hanson, P. R. Synthesis 2011, 2743–2750.Google Scholar
  46. 14.
    Zang, Q.; Javed, S.; Porubsky, P.; Ullah, F.; Neuenswander, B.; Lushington, G. H.; Basha, F. Z.; Organ, M. G.; Hanson, P. R. ACS Comb. Sci., 2012, 14, 211–217.CrossRefGoogle Scholar
  47. 15.
    Ullah, F.; Zang, Q.; Javed, S.; Porubsky, P.; Neuenswander, B.; Lushington, G. H.; Hanson, P. R.; Organ, M. G. Synthesis 2012, 44, 2547–2554.CrossRefGoogle Scholar
  48. 16.
    Novachek, K. A.; Meyers, A. I. Tetrahedron Lett. 1996, 37, 1743–1746.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2012

Authors and Affiliations

  • Farman Ullah
    • 1
    • 3
  • Qin Zang
    • 1
    • 3
  • Salim Javed
    • 2
    • 3
  • Aihua Zhou
    • 2
    • 3
  • Christopher A. Knudtson
    • 2
    • 3
  • Danse Bi
    • 2
    • 3
  • Paul R. Hanson
    • 2
    • 3
  • Michael G. Organ
    • 1
    • 3
  1. 1.Department of ChemistryYork UniversityTorontoCanada
  2. 2.Department of ChemistryUniversity of KansasLawrenceUSA
  3. 3.Center for Chemical Methodologies and Library Development at the University of Kansas (KU-CMLD)Delbert M. Shankel Structural Biology CenterLawrenceUSA

Personalised recommendations