Advertisement

Journal of Flow Chemistry

, Volume 2, Issue 4, pp 129–134 | Cite as

Regioselectivity Control of the Ring Opening of Epoxides With Sodium Azide in a Microreactor

  • Rajesh Munirathinam
  • Daejune Joe
  • Jurriaan Huskens
  • Willem Verboom
Full Paper
  • 4 Downloads

Abstract

The reaction of different types of aromatic and aliphatic epoxides with sodium azide to give vicinal azido alcohols was studied in a microreactor with and without pillars in the channels. Dependent on the substrate, the regioselectivity of the ring opening is affected by the used solvent system, viz. acetonitrile-water (sometimes with 10% acetic acid to promote the reactivity of substrates) or t-butyl acetate-water containing Tween80 as a surfactant. For styrene oxide and α-methylstyrene oxide, the α/β regioselectivity changes from 4 to 10 and 1.7 to 6.2, respectively, going from acetonitrile-water to Tween80-containing t-butyl acetate-water. The addition of a surfactant (Tween80) stabilizes the interface in the biphasic t-butyl acetate-water. Pillar-containing microreactors gave better conversions than micro-reactors without pillars and lab scale reactions, probably due to better mixing.

Keywords

microreactors epoxides regioselectivity 1,2-azido alcohols surfactants 

Supplementary material

41981_2012_20400129_MOESM1_ESM.pdf (137 kb)
Supplementary material, approximately 141 KB.

References

  1. 1.
    Chini, M.; Crotti, P.; Macchia, F. Tetrahedron Lett. 1990, 31, 5641–5644.CrossRefGoogle Scholar
  2. 2.
    Jurczak, J. In Preparative Carbohydrate Chemistry; Hanessian, S.; Ed.; Marcel Dekker: New York, 1997; pp 595–614.Google Scholar
  3. 3.
    Coe, D. M.; Myers, P. L.; Parry, D. M.; Roberts, S. M.; Storerb, R. J. Chem. Soc., Chem. Commun. 1990, 151–153.Google Scholar
  4. 4.
    Smith, B. T.; Gracias, V.; Aubé, J. J. Org. Chem. 2000, 65, 3771–3774.CrossRefGoogle Scholar
  5. 5.
    Badiang, J. G.; Aubé, J. J. Org. Chem. 1996, 61, 2484–2487.CrossRefGoogle Scholar
  6. 6.
    Tae Cho, B.; Kyu Kang, S.; Hye Shin, S. Tetrahedron: Asymmetry 2002, 13, 1209–1217.CrossRefGoogle Scholar
  7. 7.
    Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297–368.CrossRefGoogle Scholar
  8. 8.(a)
    Behrens, C. H.; Sharpless, K. B. J. Org. Chem. 1985, 50, 5696–5704CrossRefGoogle Scholar
  9. (b).
    Crotti, P.; Di Bussolo, V.; Favero, L.; Macchia, F.; Pineschi, M. Tetrahedron Lett. 1996, 37, 1675–1678CrossRefGoogle Scholar
  10. (c).
    Kazemi, F.; Kiasat, A. R.; Ebrahimi, S. Synth. Commun. 2003, 33, 999–1004CrossRefGoogle Scholar
  11. (d).
    Fringuelli, F.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 2001, 66, 4719–4722.CrossRefGoogle Scholar
  12. 9.
    Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 1999, 64, 6094–6096.CrossRefGoogle Scholar
  13. 10.(a)
    Schneider, C. Synlett 2000, 1840–1842Google Scholar
  14. (b).
    Kiasat, A. R.; Mirzajani, R.; Shalbaf, H.; Tabatabaei, T.; Fallah-Mehrjardi, M. J. Chin. Chem. Soc. 2009, 56, 594–599CrossRefGoogle Scholar
  15. (c).
    Kiasat, A. R.; Badri, R.; Zargar, B.; Sayyahi, S. J. Org. Chem. 2008, 73, 8382–8385CrossRefGoogle Scholar
  16. (d).
    Tamami, B.; Mahdavi, H. Tetrahedron Lett. 2001, 42, 8721–8724.CrossRefGoogle Scholar
  17. 11.
    Sabitha, G.; Babu, R. S.; Rajkumar, M.; Yadav, J. S. Org. Lett. 2002, 4, 343–345CrossRefGoogle Scholar
  18. (b).
    Bhaumik, K.; Mali, U. W.; Akamanchi, K. G. Synth. Commun. 2003, 33, 1603–1610.CrossRefGoogle Scholar
  19. 12.
    Parker, R. E.; Isaacs, N. S. Chem. Rev. 1959, 59, 737–799CrossRefGoogle Scholar
  20. (b).
    Smith, J.G. Synthesis 1984, 629–656Google Scholar
  21. (c).
    Pocker, Y.; Ronald, B. P.; Anderson, K. W. J. Am. Chem. Soc. 1988, 110, 6492–6497CrossRefGoogle Scholar
  22. (d).
    Bonollo, S.; Lanari, D.; Vaccaro, L. Eur. J. Org. Chem. 2011, 2587–2598.Google Scholar
  23. 13.
    Microreactors in Organic Synthesis and Catalysis.; Wirth, T., Ed.; Wiley-VCH: Weinheim, 2008.Google Scholar
  24. 14.(a)
    Watts, P.; Wiles, C. Chem. Commun. 2007, 443–467Google Scholar
  25. (b).
    Fukuyama, T.; Rahman, T.; Sato, M.; Ryu, I. Synlett 2008, 2008, 151–163CrossRefGoogle Scholar
  26. (c).
    Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Angew. Chem. Int. Ed. 2011, 50, 7502–7519CrossRefGoogle Scholar
  27. (d).
    Brivio, M.; Verboom, W.; Reinhoudt, D. N. Lab Chip 2006, 6, 329–344.CrossRefGoogle Scholar
  28. 15.
    Kobayashi, J., Mori, Y.; Kobayashi, S. Chem. Asian J. 2006, 1, 22–35.CrossRefGoogle Scholar
  29. 16.
    Kiwi-Minsker, L.; Renken, A. Catal. Today 2005, 110, 2–14.CrossRefGoogle Scholar
  30. 17.
    Jähnisch, K.; Hessel, V.; Löwe, H.; Baerns, M. Angew. Chem. Int. Ed. 2004, 43, 406–446.CrossRefGoogle Scholar
  31. 18.
    Caron, M.; Sharpless, K. B. J. Org. Chem. 1985, 50, 1557–1560.CrossRefGoogle Scholar
  32. 19.
    Amantini, D.; Fringuelli, F.; Piermatti, O.; Tortoioli, S.; Vaccaro, L. ARKIVOC 2002, xi, 293–311.Google Scholar
  33. 20.
    Using these very small microreactors (7.25 μL), the throughput is 23 mg/day product formation for a residence time of 14 min and 30 s.Google Scholar
  34. 21.
    Ahmed, B.; Barrow, D.; Wirth, T. Adv. Synth. Catal. 2006, 348, 1043–1048.CrossRefGoogle Scholar
  35. 22.
    Sowmiya, M.; Tiwari, A. K.; Saha, S. K. J. Colloid Interface Sci. 2010, 344, 97–104.CrossRefGoogle Scholar
  36. 23.
    Using these very small microreactors (7.25 μL), the throughput is12 mg/day product formation for a residence time of 14 min and 30 s.Google Scholar
  37. 24.
    Li, R.; Jansen, D. J.; Datta, A. Org. Biomol. Chem. 2009, 7, 1921–1930.CrossRefGoogle Scholar
  38. 25.
    Molinaro, C.; Guilbault, A.-A.; Kosjek, B. Org.Lett. 2010, 12, 3772–3775.CrossRefGoogle Scholar
  39. 26.
    Saito, K.; Okawara, M.; Harada, K. React. Polym. 1991, 15, 79–83.CrossRefGoogle Scholar
  40. 27.
    Stewart, I. C.; Lee, C. C.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 17616–17617.CrossRefGoogle Scholar
  41. 28.
    Page, P. C. B.; Parker, P.; Buckley, B. R.; Rassias, G. A.; Bethell, D. Tetrahedron 2009, 65, 2910–2915.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2012

Authors and Affiliations

  • Rajesh Munirathinam
    • 1
  • Daejune Joe
    • 1
  • Jurriaan Huskens
    • 1
  • Willem Verboom
    • 1
  1. 1.Laboratory of Molecular Nanofabrication, MESA+Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations