Journal of Flow Chemistry

, Volume 2, Issue 2, pp 47–51 | Cite as

Acetylation of Alcohols and Phenols Using Continuous-Flow, Tungstosilicic Acid-Supported, Monolith Microreactors With Scale-Up Capability

  • Ping He
  • Stephen J. Haswell
  • Paul D. I. Fletcher
  • Stephen M. Kelly
  • Andrew Mansfield


A highly scalable and efficient flow-system has been developed to perform the catalyzed acetylation of alcohols and phenols, such as salicylic acid, at room temperature in excellent yield. The volumetric throughput and the amount of product can be increased simply by increasing the diameter of a versatile catalytic 12-tungstosilicic acid-supported, silica monolith can be used to increase the quantity of product produced without having to changeing the optimal operatingreaction conditions.


micro reactor continuous-flow monolith 


  1. 1.(a)
    Sartori, G.; Bellini, R.; Bigi, F.; Bosica, G.; Maggi, R.; Righi, P. Chem. Rev. 2004, 104, 199–250CrossRefGoogle Scholar
  2. (b).
    Pearson, A. L.; Roush, W. J. Handbook of Reagents for Organic Synthesis: Acetylating Agents and Protecting Groups; John Wiley: Chichester, U.K., 1999.Google Scholar
  3. 2.
    Warner, T. D.; Mitchell, J. A. Proc. Natl. Acad. Sci. USA 2002, 99, 13371–13373.CrossRefGoogle Scholar
  4. 3.(a)
    Heravi, M. M.; Behbahani, F. K.; Shoar, R. H.; Oskooie, H. A. J. Mol. Catal. A: Chem. 2006, 244, 8–10CrossRefGoogle Scholar
  5. (b).
    Kantam, M. L.; Aziz, K.; Likhar, P. R. Catal. Commun. 2006, 7, 484–487.CrossRefGoogle Scholar
  6. 4.
    Orita, A.; Tanahashi, C.; Kakuda, A; Otera, J. Angew. Chem. Int. Ed. 2000, 39, 2877–2879.CrossRefGoogle Scholar
  7. 5.(a)
    Heravi, M. M.; Behbahani, F. K.; Bamoharram, F. F. J. Mol. Catal. A: Chem. 2006, 253, 16–19CrossRefGoogle Scholar
  8. (b).
    Heravi, M. M.; Behbahani, F. K.; Bamoharram, F. F. ARKIVOC 2007, xvi, 123–131.Google Scholar
  9. 6.
    Firouzabadi, H.; Iranpoor, N.; Amani, K. Synthesis 2003, 408–412.Google Scholar
  10. 7.(a)
    Kaur, J.; Griffin, K.; Harrison, B.; Kozhevinkov, I. V. J. Catal. 2002, 208, 448–455CrossRefGoogle Scholar
  11. (b).
    Azizi, N.; Torkiyan, L.; Saidi, M. R. Org. Lett. 2006, 8, 2079–2082.CrossRefGoogle Scholar
  12. 8.
    Firouzabadi, H.; Iranpoor, N.; Jafari, A. A. J. Organomet. Chem. 2005, 690, 1556–1559.CrossRefGoogle Scholar
  13. 9.
    Azizi, N.; Saidi, M. R. Tetrahedron 2007, 63, 888–891.CrossRefGoogle Scholar
  14. 10.
    Dias, A. S.; Lima, S.; Pillinger, M.; Valente, A. A. Carbohydr. Res. 2006, 341, 2946–2953.CrossRefGoogle Scholar
  15. 11.
    Zhao, S.; Cheng, M.; Li, J.; Tian, J.; Wang, X. Chem. Commun. 2011, 47, 2176–2178.CrossRefGoogle Scholar
  16. 12.(a)
    Kozhevnikov, I. V. In Catalysis for Fine Chemical Synthesis, Catalysis by Polyoxometalates 2; Derouane, E., Eds.; Wiley: New York, 2002Google Scholar
  17. (b).
    Romanelli, G. P.; Bennardi, D.; Ruiz, D. M.; Baronetti, G.; Thomas, H. J.; Autino, J. C. Tetrahedron Lett. 2004, 45, 8935–8939.CrossRefGoogle Scholar
  18. 13.(a)
    Popa, A.; Sasca, V.; Kiš, E. E.; Marinković-Nedučin, R.; Bokorov, M. T.; Halasz, J. J. Opt. Adv. Mater. 2005, 7, 3169–3177Google Scholar
  19. (b).
    Damayanova, S.; Gomez, M. L.; Banares, M. A.; Fierro, J. L. G. Chem. Mater. 2000, 12, 501–510CrossRefGoogle Scholar
  20. (c).
    Liu, Y.; Xu, L.; Xu, B.; Li, Z.; Jia L.; Guo, W. J. Mol. Catal. A: Chem. 2009, 297, 86–92CrossRefGoogle Scholar
  21. (d).
    Xia, Q. H.; Hidajat, K.; Kawi, S. J. Catal. 2003, 209, 433–444CrossRefGoogle Scholar
  22. (e).
    Juan, J. C.; Zhang, J. C.; Yarmo, M. A. J. Mol. Catal. A: Chem. 2007, 267, 265–271.CrossRefGoogle Scholar
  23. 14.(a)
    Zhang, F.; Yuan, C.; Wang, J.; Kong, Y.; Zhu, H.; Wang, C. J. Mol. Catal. A: Chem. 2006, 247, 130–137CrossRefGoogle Scholar
  24. (b).
    Zhu, Z.; Yang, W. J. Phys. Chem. C 2009, 113, 17025–17031CrossRefGoogle Scholar
  25. (c).
    Javid, A.; Heravi, M. M.; Bamoharram, F. F. E-J Chem. 2011, 8, 910–916.CrossRefGoogle Scholar
  26. 15.(a)
    Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300–2318CrossRefGoogle Scholar
  27. (b).
    Pennemann, H., Watts, P.; Haswell, S. J.; Hessel, V.; Löwe, H. Org. Process Res. Dev. 2004, 8, 422–439CrossRefGoogle Scholar
  28. (c).
    He, P.; Haswell, S. J.; Fletcher, P. D. I.; Kelly, S. M.; Mansfield, A. Beilstein J. Org. Chem. 2011, 7, 1150–1157.CrossRefGoogle Scholar
  29. 16.(a)
    Vankayala, B. K.; Löb, P.; Hessel, V.; Menges, G.; Hoffman, C.; Metzke, D.; Krtschil, U.; Kost, H. J. Int. J. Chem. React. Eng., 2007, 5, A91Google Scholar
  30. (b).
    De Mas, N.; Günther, A.; Kraus, T.; Schmidt, M. A.; Jensen, K. F. Ind. Eng. Chem. Res. 2005, 44, 8997–9013CrossRefGoogle Scholar
  31. (c).
    He, P.; Fletcher, P. D. I.; Haswell, S. J. Lab. Chip 2004, 4, 38–41.CrossRefGoogle Scholar
  32. 17.
    Bielanski, A.; Lubanska, A.; Pozniczek, J.; Micek-IInick, A. Appl. Catal. A: Gen. 2003, 238, 239–250.CrossRefGoogle Scholar
  33. 18.
    Nasr-Esfahani, M.; Montazerozohori, M.; Moghadam, M.; Akhlaghi, P. ARKIVOC 2010, ii, 97–107.Google Scholar
  34. 19.
    Fletcher, P. D. I.; Haswell, S. J.; He, P.; Kelly, S. M.; Mansfield, A. J. Porous Mater. 2011, 18, 501–508.CrossRefGoogle Scholar
  35. 20.
    He, P.; Fletcher, P. D. I.; Haswell, S. J. Appl. Catal. A: Gen. 2004, 274, 111–114.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2012

Authors and Affiliations

  • Ping He
    • 1
  • Stephen J. Haswell
    • 1
  • Paul D. I. Fletcher
    • 1
  • Stephen M. Kelly
    • 1
  • Andrew Mansfield
    • 2
  1. 1.Department of ChemistryUniversity of HullHullUK
  2. 2.Pfizer Global Research and DevelopmentSandwich, KentUK

Personalised recommendations