Journal of Flow Chemistry

, Volume 2, Issue 2, pp 56–62 | Cite as

Simplified Mesofluidic Systems for the Formation of Micron to Millimeter Droplets and the Synthesis of Materials

  • Jeremy L. Steinbacher
  • Yankai Lui
  • Brian P. Mason
  • William L. Olbricht
  • D. Tyler McQuade
Full Paper


We present and validate simple mesofluidic devices for producing monodisperse droplets and materials. The significance of this work is a demonstration that simple and complex droplet formulations can be prepared uniformly using off-the-shelf small-diameter tubing, barbed tubing adapters, and needles. With these simple tools, multiple droplet-forming devices and a new particle concentrator were produced and validated. We demonstrate that the droplet-forming devices could produce low-dispersity particles from 25 to 1200 μm and that these results are similar to results from more complicated devices. Through a study of the fluid dynamics and a dimensional analysis of the data, we have correlated droplet size with two dimensionless groups, capillary number and viscosity ratio. The flow-focusing device is more sensitive to both parameters than the T-junction geometry. The modular character of our mesofluidic devices allowed us to rapidly assemble compound devices that use flow-focusing and T-junction devices in series to create complex droplet-in-microcapsule materials. This work demonstrates that flow chemistry does not require complicated tools, and an inexpensive tool-kit can allow anyone with interest to enter the field.


microfluidics monodisperse emulsions materials synthesis continuous materials synthesis fluid dynamics 

Supplementary material

41981_2012_2020056_MOESM1_ESM.pdf (118 kb)
Supplementary material, approximately 121 KB.

References References

  1. 1.(a)
    Bruin, G. J. M. Electrophoresis 2000, 21, 3931–3951CrossRefGoogle Scholar
  2. (b).
    Ehrfeld, W.; Hessel, V.; Lowe, H. Microreactors. Wiley-VCH: Weinheim, 2000CrossRefGoogle Scholar
  3. (c).
    Figeys, D.; Gygi, S. P.; McKinnon, G.; Aebersold, R. Anal. Chem. 1998, 70, 3728–3734CrossRefGoogle Scholar
  4. (d).
    Kutter, J. P. Trac-Trends Anal. Chem. 2000, 19, 352–363CrossRefGoogle Scholar
  5. (e).
    Lion, N.; Rohner, T. C.; Dayon, L.; Arnaud, I. L.; Damoc, E.; Youhnovski, N.; Wu, Z. Y.; Roussel, C.; Josserand, J.; Jensen, H.; Rossier, J. S.; Przybylski, M.; Girault, H. H. Electrophoresis 2003, 24, 3533–3562CrossRefGoogle Scholar
  6. (f).
    Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300–2318CrossRefGoogle Scholar
  7. (g).
    Wang, J. Electrophoresis 2002, 23, 713–718CrossRefGoogle Scholar
  8. (h).
    Whitesides, G. M. Nature 2006, 442, 368–373.CrossRefGoogle Scholar
  9. 2.
    Xia, Y. N.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 551–575.CrossRefGoogle Scholar
  10. 3.
    Duffy, D. C.; McDonald, J. C.; Schueller, O. J. A.; Whitesides, G. M. Anal. Chem. 1998, 70, 4974–4984.CrossRefGoogle Scholar
  11. 4.
    Song, H.; Chen, D. L.; Ismagilov, R. F. Angew. Chem.-Int. Edit. 2006, 45, 7336–7356.CrossRefGoogle Scholar
  12. 5.
    Steinbacher, J. L.; McQuade, D. T. J. Polym. Sci. Pol. Chem. 2006, 44, 6505–6533.CrossRefGoogle Scholar
  13. 6.(a)
    Olbricht, W. L.; Kung, D. M. J. Colloid Interface Sci. 1987, 120, 229–244CrossRefGoogle Scholar
  14. (b).
    Olbricht, W. L. Annu. Rev. Fluid Mech. 1996, 28, 187–213.CrossRefGoogle Scholar
  15. 7.
    Thorsen, T.; Roberts, R. W.; Arnold, F. H.; Quake, S. R. Phys. Rev. Lett. 2001, 86, 4163–4166.CrossRefGoogle Scholar
  16. 8.(a)
    Tice, J. D.; Song, H.; Lyon, A. D.; Ismagilov, R. F. Langmuir 2003, 19, 9127–9133CrossRefGoogle Scholar
  17. (b).
    Tice, J. D.; Lyon, A. D.; Ismagilov, R. F. Anal. Chim. Acta 2004, 507, 73–77.CrossRefGoogle Scholar
  18. 9.(a)
    Song, H.; Tice, J. D.; Ismagilov, R. F. Angew. Chem. Int. Ed. 42, 768–772Google Scholar
  19. (b).
    Zheng, B.; Tice, J. D.; Ismagilov, R. F. Anal. Chem. 76, 4977–4982.Google Scholar
  20. 10.
    Gañán-Calvo, A. M.; Gordillo, J. M. Phys. Rev. Lett. 2001, 87.Google Scholar
  21. 11.(a)
    Anna, S. L.; Bontoux, N.; Stone, H. A. Appl. Phys. Lett. 2003, 82, 364–366CrossRefGoogle Scholar
  22. (b).
    Lewis, P. C.; Graham, R. R.; Nie, Z. H.; Xu, S. Q.; Seo, M.; Kumacheva, E. Macromolecules 2005, 38, 4536–4538CrossRefGoogle Scholar
  23. (c).
    Xu, Q. Y.; Nakajima, M. Appl. Phys. Lett. 2004, 85, 3726–3728CrossRefGoogle Scholar
  24. (d).
    Nie, Z. H.; Xu, S. Q.; Seo, M.; Lewis, P. C.; Kumacheva, E. J. Am. Chem. Soc. 2005, 127, 8058–8063CrossRefGoogle Scholar
  25. (e).
    Xu, S. Q.; Nie, Z. H.; Seo, M.; Lewis, P.; Kumacheva, E.; Stone, H. A.; Garstecki, P.; Weibel, D. B.; Gitlin, I.; Whitesides, G. M. Angew. Chem. Int. Ed. 2005, 44, 724–728CrossRefGoogle Scholar
  26. (f).
    Seo, M.; Nie, Z. H.; Xu, S. Q.; Mok, M.; Lewis, P. C.; Graham, R.; Kumacheva, E. Langmuir 2005, 21, 11614–11622CrossRefGoogle Scholar
  27. (g).
    De Geest, B.G.; Urbanski, J.P.; Thorsen, T.; Demeester, J.; De Smedt, S. C. Langmuir 2005, 21, 10275–10279CrossRefGoogle Scholar
  28. (h).
    Tan, Y. C.; Cristini, V.; Lee, A. P. Sens. Actuator B-Chem. 2006, 114, 350–356CrossRefGoogle Scholar
  29. (i).
    Lorenceau, E.; Sang, Y. Y. C.; Höhler, R.; Cohen-Addad, S. Phys. Fluids 2006, 18Google Scholar
  30. (j).
    Yobas, L.; Martens, S.; Ong, W. L.; Ranganathan, N. Lab Chip 2006, 6, 1073–1079CrossRefGoogle Scholar
  31. (k).
    Sundararajan, N.; Pio, M. S.; Lee, L. P.; Berlin, A. A. J. Microelectromech. Syst. 2004, 13, 559–567.CrossRefGoogle Scholar
  32. 12.(a)
    Takeuchi, S.; Garstecki, P.; Weibel, D. B.; Whitesides, G. M. Adv. Mater. 2005, 17, 1067–1072CrossRefGoogle Scholar
  33. (b).
    Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A. Science 2005, 308, 537–541CrossRefGoogle Scholar
  34. (c).
    Nisisako, T.; Torii, T.; Higuchi, T. Chem. Eng. J. 2004, 101, 23–29CrossRefGoogle Scholar
  35. (d).
    Jeong, W. J.; Kim, J. Y.; Choo, J.; Lee, E. K.; Han, C. S.; Beebe, D. J.; Seong, G. H.; Lee, S. H. Langmuir 2005, 21, 3738–3741.CrossRefGoogle Scholar
  36. 13.
    Quevedo, E.; Steinbacher, J.; McQuade, D. T. J. Am. Chem. Soc. 127, 10498–10499.Google Scholar
  37. 14.
    Steinbacher, J. L.; Moy, R. W. Y.; Price, K. E.; Cummings, M. A.; Roychowdhury, C.; Buffy, J. J.; Olbricht, W. L.; Haaf, M.; McQuade, D. T. J. Am. Chem. Soc. 2006, 128, 9442–9447.CrossRefGoogle Scholar
  38. 15.
    Poe, S. L.; Cummings, M. A.; Haaf, M. R.; McQuade, D. T. Angew. Chem.-Int. Edit. 2006, 45, 1544–1548.CrossRefGoogle Scholar
  39. 16.
    584 μm inner diameter/902 μm outer diameter to 1,194 μm inner diameter/1,651 μm outer diameter.Google Scholar
  40. 17.
    Bogdan, A. R.; Mason, B. P.; Sylvester, K. T.; McQuade, D. T. Angew. Chem. Int. Ed. 2007, 46, 1698–1701.CrossRefGoogle Scholar
  41. 18.
    Arshady, R.: Microspheres, Microcapsules, & Liposomes. Volume 1: Preparation & Chemical Applications; Citus Books: London, 1999; Vol. 1, p 576.Google Scholar
  42. 19.
    Xu, J. H.; Li, S. W.; Tan, J.; Wang, Y. J.; Luo, G. S. Aiche J. 2006, 52, 3005–3010.CrossRefGoogle Scholar
  43. 20.
    For the dimensional analysis, we make several assumptions. First, owing to the small size of the microfluidic device, the Reynolds numbers of the flows were small, so inertial effects can be ignored. Also, we assume that the density differences between the fluids are sufficiently small that buoyancy is unimportant. The surfactant used in some of the continuous phase fluids affected the measured interfacial tension of the system, but we assumed it played no other role in drop formation.Google Scholar
  44. 21.
    Garstecki, P.; Stone, H. A.; Whitesides, G. M. Phys. Rev. Lett. 2005, 94.Google Scholar
  45. 22.
    Ca was calculated using the physical parameters listed in Table 1 and vc calculated from volumetric flow rates. For the TJD, we used the average velocity, in the PVC tube for vc. For the FFD, we used the average velocity at the outlet adapter for vc, which is appropriate because we placed the tip of the disperse phase needle as close as possible to the tip of the outlet adapter. Owing to geometric arguments and mass conservation, the fluid velocity at the outlet adapter, where the droplets formed, was seven times the velocity in the PVC outlet tube.Google Scholar
  46. 23.
    Rallison, J. M. Annu. Rev. Fluid Mech. 1984, 16, 45–66.CrossRefGoogle Scholar
  47. 24.(a)
    Stone, H. A. Annu. Rev. Fluid Mech. 1994, 26, 65–102CrossRefGoogle Scholar
  48. 24.(b)
    Bentley, B. J.; Leal, L. G. J. Fluid Mech. 1986, 167, 241–283.CrossRefGoogle Scholar
  49. 25.(a)
    Garstecki, P.; Fuerstman, M. J.; Stone, H. A.; Whitesides, G. M. Lab Chip 2006, 6, 437–446CrossRefGoogle Scholar
  50. (b).
    Cramer, C.; Fischer, P.; Windhab, E. J. Chem. Eng. Sci. 2004, 59, 3045–3058.CrossRefGoogle Scholar
  51. 26.
    Garstecki et al. (ref. 21) found that λ has no effect on droplet size in a microfluidic T-junction operating in a squeezing regime. However, the range of Ca examined was lower than the range in our systems (i.e. 10−4–10−2 vs. 10−3–101 in this study), and the device geometries differed significantly between the two experiments. Cramer et al. (ref. 32a) also reported little effect of viscosity ratio on droplet diameter in a coaxial flow cell, but their smallest λ corresponds to the highest λ used in our work, and the disperse phase flow rates were at least 2.5 times greater.Google Scholar
  52. 27.
    van der Graaf, S.; Nisisako, T.; Schroen, C. G. P. H.; van der Sman, R. G. M.; Boom, R. M. Langmuir 2006, 22, 4144–4152.CrossRefGoogle Scholar
  53. 28.(a)
    Chen, C. S.; Breslauer, D. N.; Luna, J. I.; Grimes, A.; Chin, W. C.; Leeb, L. P.; Khine, M. Lab Chip 2008, 8, 622–624CrossRefGoogle Scholar
  54. (b).
    Bartolo, D.; Degre, G.; Nghe, P.; Studer, V. Microfluidic Stickers. Lab Chip 2008, 8, 274–279.CrossRefGoogle Scholar
  55. 29.
    Bruzewicz, D. A.; Reches, M.; Whitesides, G. M. Anal. Chem. 2008, 80, 3387–3392.CrossRefGoogle Scholar
  56. 30.(a)
    Serra, C.; Berton, N.; Bouquey, M.; Prat, L.; Hadziioannou, G. Langmuir 2007, 23, 7745–7750CrossRefGoogle Scholar
  57. (b).
    Panizza, P.; Engl, W.; Hany, C.; Backov, R. Colloid Surf. A-Physicochem. Eng. Asp. 2008, 312, 24–31.CrossRefGoogle Scholar
  58. 31.(a)
    Ambravaneswaran, B.; Subramani, H. J.; Phillips, S. D.; Basaran, O. A. Phys. Rev. Lett. 2004, 93Google Scholar
  59. (b).
    Clanet, C.; Lasheras, J. C. J. Fluid Mech. 1999, 383, 307–326.CrossRefGoogle Scholar
  60. 32.(a)
    Cramer, C.; Beruter, B.; Fischer, P.; Windhab, E. J. Chem. Eng. Technol. 2002, 25, 499–506CrossRefGoogle Scholar
  61. (b).
    Rayleigh, L. Proc. R. Soc. Lon. 1879, 29, 71–79CrossRefGoogle Scholar
  62. (c).
    Tomotika, S. Proc. R. Soc. Lon. Ser. A. 1935, 150, 322–337.CrossRefGoogle Scholar
  63. 33.(a)
    Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y. Adv. Mater. 2006, 18, 1152–1156CrossRefGoogle Scholar
  64. (b).
    Nie, Z. H.; Li, W.; Seo, M.; Xu, S. Q.; Kumacheva, E. J. Am. Chem. Soc. 2006, 128, 9408–9412CrossRefGoogle Scholar
  65. (c).
    Dendukuri, D.; Pregibon, D. C.; Collins, J.; Hatton, T. A.; Doyle, P. S. Nat. Mater. 2006, 5, 365–369.CrossRefGoogle Scholar
  66. 34.(a)
    Seo, M.; Paquet, C.; Nie, Z. H.; Xu, S. Q.; Kumacheva, E. Soft Matter 2007, 3, 986–992CrossRefGoogle Scholar
  67. (b).
    He, Y. H. Chem. Eng. Sci. 2008, 63, 2500–2507.CrossRefGoogle Scholar
  68. 35.
    Price, K. E.; Mason, B. P.; Bogdan, A. R.; Broadwater, S. J.; Steinbacher, J. L.; McQuade, D. T. J. Am. Chem. Soc. 2006, 128, 10376–10377.CrossRefGoogle Scholar
  69. 36.(a)
    Broadwater, S. J.; Roth, S. L.; Price, K. E.; Kobaslija, M.; McQuade, D. T. Org. Biomol. Chem. 2005, 3, 2899–2906CrossRefGoogle Scholar
  70. (b).
    Poe, S. L.; Kobaslija, M.; McQuade, D. T. J. Am. Chem. Soc. 2006, 128, 15586–15587.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2012

Authors and Affiliations

  • Jeremy L. Steinbacher
    • 1
  • Yankai Lui
    • 2
  • Brian P. Mason
    • 1
  • William L. Olbricht
    • 2
  • D. Tyler McQuade
    • 3
  1. 1.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA
  2. 2.School of Chemical and Biomolecular EngineeringCornell UniversityIthacaUSA
  3. 3.Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeUSA

Personalised recommendations