Skip to main content
Log in

Pattern dynamics: an essay concerning principles, techniques, and applications

  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

This Essay is response to the general question that I put to myself: How should I, an outsider to the topic, go about rationalising the notion of pattern and its dynamics when the pattern objects come from the vegetation? To facilitate succinct discussion of a very broad and intertwined topic, the Essay breaks down the pattern paradigm into three parts. The first part is concerned with the conceptual universe defined by the pattern objects, scale dependences, and order-chaos convolutions. The second part deals with the description of pattern and its evolution through time. The third, in the manner of a number of short comments, takes up pattern epidemiology, the Art of revealing cause and effect, extent, and significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand, M. and L. Orlóci. 1997. Chaotic dynamics in multispecies community. Env Ecol. Stat. 4:337–344.

    Article  Google Scholar 

  • Anand, M. and R. Kadmon. 2000. Community-level analysis of spatiotemporal plant dynamics. Ecoscience 7:101–110.

    Article  Google Scholar 

  • Anand, M., and L. Orlóci. 2000. On hierarchical partitioning of an ecological complexity function. Ecol. Model. 132:51–62.

    Article  Google Scholar 

  • Bartha, S., T. Czaran, and J. Podani. 1998. Exploring plant community dynamics in abstract coenostate space. Abstr. Bot. 22:49–66.

    Google Scholar 

  • Bartlett, M. S. 1975. The Statistical Analysis of Spatial Pattern. Chapman and Hall, London.

    Google Scholar 

  • Connell, J.H. and R.O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Amer. Nat. 111:1119–1144

    Article  Google Scholar 

  • Dansereau, P. 1957. Biogeography. An Ecological Perspective. Ronald Press, New York.

    Google Scholar 

  • Darwin, C. 1859. On the Origin of Species. Murray, London.

    Google Scholar 

  • Delcourt, P.A. and H.R. Delcourt. 1987. Long-term Forest Dynamics of the Temperate Zone. Springer, New York.

    Book  Google Scholar 

  • Egler, F.E. 1954. Vegetation science concepts. I. Initial floristic composition - a factor in old-field vegetation development. Vegetatio 4:412–417.

    Article  Google Scholar 

  • Fekete, G. and Z. Fekete. 1998. Distance distribution between patch systems: a new method to analyse community mosaics. Abstr. Bot. 22:29–35.

    Google Scholar 

  • Feoli, E. and V. Zuccarello. 1988. Syntaxonomy: a source for useful fuzzy sets for environmental analysis? Coenoses 3:141–147.

    Google Scholar 

  • Greig-Smith, P. 1952. The use of random and contiguous quadrats in the study of the structure of plant communities. Ann. Bot, London 16:293–316.

    Article  Google Scholar 

  • Greig-Smith, P. 1983. Quantitative Plant Ecology. 3rd ed. Blackwell, London.

    Google Scholar 

  • Grime, J.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Amer. Nat. 111: 107-1169-1194.

  • Harper, J.L. 1977. Population Biology of Plants. Academic Press, London.

    Google Scholar 

  • He, X. and L. Orlóci. 1998. Anderson pond revisited: the late-Quaternary vegetation process. Abstr. Bot. 22: 81–93.

    Google Scholar 

  • Kerner von Marilaun, A. 1863. Das Pflanzenlebender Danauldnder. Innsbruck, Wagner.

    Google Scholar 

  • Kershaw, K.A. 1973. Quantitative and Dynamic Plant Ecology. 2nd ed. Edward Arnold, London.

    Google Scholar 

  • Krajina, V. J. 1963. Biogeoclimatic zones on the Hawaiian Islands. Newsletter of the Hawaiian Botanical Society 7:93–98.

    Google Scholar 

  • Küchler, A.W. 1990. Natural vegetation. In: E.B. Espenshade and J.L. Morrison (eds.), Goode ’s World Atlas, 18th ed. Rand McNally, Chicago, pp. 16–17.

    Google Scholar 

  • Lippe, E., De Smidt, J.T and D.C. Glen-Lewin. 1985. Markov models and succession: atest from a heathland in the Netherlands. J. Ecol. 73:775–791.

    Article  Google Scholar 

  • Mandelbrot, B.B. 1967. How long is the coastline of Britain? Statistical self-similarity and fractal dimension. Science 156:636–638.

    Article  CAS  PubMed  Google Scholar 

  • Mandelbrot, B.B. 1977. Fractals. Form, Chance, and Dimension. Freeman, San Francisco.

    Google Scholar 

  • May, R.M. 1976. Simple mathematical models with very complicated dynamics. Nature 261:459–471.

    Article  CAS  PubMed  Google Scholar 

  • May, R.M. and G.F. Oster. 1976. Bifurcations and dynamic complexity in simple ecological models. Amer. Nat. 110:573–599.

    Article  Google Scholar 

  • Milankovitch, M.M. 1941. Canon of isolation and the Ice-Age problem. Royal Serb Academy Special Publication 133.

  • Mueller-Dombois, D. 1992. A natural dieback theory, cohort senescence, as an alternative to decline disease theory. In: P.D. Manion and D. Lachance (eds.), Forest Decline Concepts. The Am. Phytopath. Soc., St. Paul, Min. pp. 26–37.

    Google Scholar 

  • Orlóci, L. 1971. An information theory model for pattern analysis. J. Ecol. 59:343–349.

    Article  Google Scholar 

  • Orlóci, L. 1978. Multivariate Analysis in Vegetation Research. 2nd ed. W. Junk, The Hague.

    Google Scholar 

  • Orlóci, L. 1994. Global warming: the process and its phytoclimatic consequences in temperate and cold zone. Coenoses 9: 69–74.

    Google Scholar 

  • Orlóci, L. 2000. From Order to Causes. A personal view, concerning the principles of syndynamics. Internet edition. http://sites.netscape.net/lorloci

    Google Scholar 

  • Orlóci L., Anand, M. and X.S. He. 1993. Markov chain: a realistic model for temporal coenosere? Biometrie-Praximetrie 33:7–26.

    Google Scholar 

  • Orlóci, L and V. De Patta Pillar. 1991. On sample size optimality in ecosystem survey. In: Feoli, E. and L. Orlóci (eds.). Computer Assisted Vegetation Analysis, Kluwer, Dordrecht, pp. 41–46.

    Chapter  Google Scholar 

  • Orlóci, L. and M. Orlóci. 1988. On recovery, Markov chains, and canonical analysis. Ecology 69: 1260–1265.

    Article  Google Scholar 

  • Perrin, J. 1913. Les Atoms. Alcan, Paris. (English transition 1919, Van Nostrand, New York.

    Google Scholar 

  • Pielou, E.C. 1964. The spatial pattern of two-phase patchworks of vegetation. Biometrics 20:156–167.

    Article  Google Scholar 

  • Pielou, E.C. 1977. Mathematical Ecology. Wiley, New York.

    Google Scholar 

  • Podani, J., T. Czaran, and S. Bartha. 1993. Pattern and diversity: the importance of spatial scale. Abstr. Bot. 17:37–51.

    Google Scholar 

  • Poore, M.E.D. 1955a,b. The use of phytosociological methods in ecological investigations. J. Ecol. 43:245–69, 606-51.

    Article  Google Scholar 

  • Post, L. Von. 1946. The prospect for pollen analysis in the study of the earth climatic history. New Phytol. 45:193–217.

    Article  Google Scholar 

  • Rényi, A. 1961. On measures of entropy and information. In: J. Neyman, ed., Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, pp. 547–561. University of California Press, Berkeley.

    Google Scholar 

  • Scheuring, I. 1993. Multifractality - a new concept in vegetation science. Abstr. Bot. 17:71–77.

    Google Scholar 

  • Schroeder, M. 1991. Fractals, Chaos, Power Laws. Freeman, New York.

    Google Scholar 

  • Tucker, C.J., J.R. Townshend, and T.E. Goff. 1985. African land-cover classification using satellite data. Science 227:369–375.

    Article  CAS  PubMed  Google Scholar 

  • Walter, H., E. Harnickell, and D. Mueller-Dombois. 1975. Climate-diagram Maps. Springer-Verlag, New York.

    Book  Google Scholar 

  • Watt, A.S., 1947. Pattern and process in the plant community. J. Ecol. 35:1–22.

    Article  Google Scholar 

  • Wildi, O. and L. Orlóci. 1991. Flexible gradient analysis: a note on ideas and an application. In: E. Feoli and L. Orlóci (eds.). Computer Assisted Vegetation Analysis, Kluwer, Dordrecht, pp. 249–254.

    Chapter  Google Scholar 

  • Wildi, O. and M. Schiitz. 2000. Reconstruction of a long-term recovery process from pasture to forest. Community Ecol. 1:25–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Orlóci.

Additional information

The Essay is based on a paper first presented at the UNIDO-ICS inter-disciplinary workshop on “The tools for understanding landscape patterns”, organised by the Director and Program Consultant at ICS in co-operation with UNIDO and the Italian Ministry of Foreign Affairs. The workshop was held at the AREA Science Research Park in Trieste, September 20–22, 2000.

Terms used in the Essay, if not otherwise defined therein, should be understood in their colloquial sense, the first meaning, given in a better interpretive dictionary of the English language.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlóci, L. Pattern dynamics: an essay concerning principles, techniques, and applications. COMMUNITY ECOLOGY 2, 1–15 (2001). https://doi.org/10.1556/ComEc.2.2001.1.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/ComEc.2.2001.1.1

Keywords

Navigation