Skip to main content
Log in

From chemical freeze-out to critical conditions in heavy ion collisions

  • Published:
Acta Physica Hungarica Series A, Heavy Ion Physics

Abstract

We compare the statistical thermodynamics of hadron resonance gas with recent LGT results at finite chemical potential. We argue that for TT cthe equation of state derived from Monte-Carlo simulations of 2-quark-flavor QCD at finite chemical potential is consistent with that of a hadron resonance gas when applying the same set of approximations as used in LGT calculations. We indicate the relation of chemical freeze-out conditions obtained from a detailed analysis of particle production in heavy ion collisions with the critical conditions required for deconfinement. We argue that the position of a hadron quark-gluon boundary line in temperature chemical potential plane can be determined in terms of the resonance gas model by the condition of fixed energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a review see: P. Braun-Munzinger, K. Redlich and J. Stachel, in Quark Gluon Plasma 3, eds. R. Hwa and X.-N. Wang [nucl-th/0304013]; A. Andronic and P. Braun-Munzinger, hep-ph/0402291.

  2. J. Manninen, F. Becattini, A. Keranen, M. Gazdzicki and R. Stock, nucl-th/0405015.

  3. P. Braun-Munzinger, D. Magestro, K. Redlich and J. Stachel, Phys. Lett. B518 (2001) 41 and references therein.

    ADS  Google Scholar 

  4. D. Magestro, J. Phys. G 28 (2002) 1745.

    Article  ADS  Google Scholar 

  5. See also, M. Gyulassy and L. McLerran, nucl-th/0405013.

  6. G. Agakichiev et al. (CERES/NA45 Collaboration), Phys. Rev. Lett. 92 (2004) 032301.

    Article  ADS  Google Scholar 

  7. H. Satz, hep-ph/0405051.

  8. J. Cleymans and K. Redlich, Phys. Rev. Lett. 81 (1998) 5284.

    Article  ADS  Google Scholar 

  9. M. Bleicher and J. Aichelin, Phys. Lett. B530 (2002) 81.

    Google Scholar 

  10. See also, L. Bravina et al., Nucl. Phys. A698 (2002) 383; Phys. Rev. C 66 (2002) 014906.

    Article  Google Scholar 

  11. P. Braun-Munzinger and J. Stachel, J. Phys. G 28 (2002) 1971.

    Article  ADS  Google Scholar 

  12. C. Bernard et al. (MILC Collaboration), hep-lat/0405029.

  13. F. Karsch, E. Laermann and A. Peikert, Nucl. Phys. B605 (2001) 579; F. Karsch, E. Laermann and A. Peikert, Phys. Lett. B478 (2000) 447; F. Karsch, Nucl. Phys. A698 (2002) 199c.

    Article  ADS  Google Scholar 

  14. J. Stachel, Nucl. Phys. A654 (1999) 119c.

    Article  ADS  Google Scholar 

  15. F. Karsch, K. Redlich and A. Tawfik, Eur. Phys. J. C29 (2003) 549; F. Karsch, K. Redlich and A. Tawfik, Phys. Lett. B571 (2003) 67.

    Article  MATH  ADS  Google Scholar 

  16. P. Braun-Munzinger and J. Stachel, Nucl. Phys. A606 (1996) 320; Nucl. Phys. A683 (1998) 3.

    Article  Google Scholar 

  17. S. Ejiri et al., to appear.

  18. F. Karsch, K. Redlich and A. Tawfik, nucl-th/0404009; A. Tawfik et al., to appear.

  19. R. Hagedorn, Nuovo Cimento 35 (1965) 395; R. Hagedorn, Thermodynamics of strong interactions, CERN Repor 71-12 (1971).

    Google Scholar 

  20. R. Vanugopalan and M. Prakash, Nucl. Phys. A546 (1992) 718; V. Koch, Nucl. Phys. A715 (2003) 108.

    Article  Google Scholar 

  21. C.R. Allton, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann and C. Schmidt, Phys. Rev. D 68 (2003) 014507; see also, S. Ejiri, Poster session at Quark Matter 04; S. Ejiri, hep-lat/0401012.

    Article  ADS  Google Scholar 

  22. C. Allton et al., to appear.

  23. E. Shuryak, hep-ph/0405066 and references therein.

  24. M. Göckeler, R. Horsley, D. Pleiter, P. Rakow and G. Schierholz, Phys. Lett. B532 (2002) 63; D.G. Richards et al., Nucl. Phys. Proc. Suppl. 109 (2002) 89.

    Google Scholar 

  25. C. Bernard et al., Phys. Rev. D 56 (1997) 5584 and references therein.

    Article  ADS  Google Scholar 

  26. A. Ali Khan et al. (CP-PACS Collaboration), Phys. Rev. D 63 (2001) 034502.

    Article  ADS  Google Scholar 

  27. R.G. Edwards and U.M. Heller, Phys. Lett. B462 (1999) 132.

    Google Scholar 

  28. W. Weinhold, B. Friman and W. Nörenberg, Phys. Lett. B433 (1998) 236; M. Post, S. Leupold and U. Mosel, nucl-th/0309085; M.F.M. Lutz, G. Wolf and B. Friman, Heavy Ion Phys. 17 (2003) 313; Prog. Theor. Phys. Suppl. 149 (2003) 152; G.E. Brown, Guo-Qiang Li, R. Rapp, M. Rho and J. Wambach, Acta Phys. Polon. B29 (1998) 2309; G.E. Brown and M. Rho, Phys. Rept. 269 (1996) 333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redlich, K. From chemical freeze-out to critical conditions in heavy ion collisions. Acta Phys. Hung. A 22, 343–353 (2005). https://doi.org/10.1556/APH.22.2005.3-4.21

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1556/APH.22.2005.3-4.21

Keywords

PACS

Navigation