Advertisement

Effect of β 6 deformation parameter on fusion cross-section and barrier distribution

  • M. Ismail
  • M. M. Osman
  • H. El Gebaly
  • H. Abou-Shady
Article

Abstract

The effect of hexacontatetrapole deformation parameter on both the fusion cross-section and the barrier distribution have been studied for U238 + O16 nuclear pair using microscopically derived heavy ion (HI) potential. A method was described to extend the calculation of HI potential between two spherical nuclei using density dependent finite range NN forces to the spherical-deformed interacting pair. Density dependent and density independent effective NN forces were used in the generalized double folding model to derive the HI potential. We found that positive β 6 has large effect on both the fusion cross-section and the barrier distribution in the presence of a small value of hexadecapole deformation parameter β 4. In this case the fusion cross-section is less sensitive to the negative value of β 6. In the presence of a large value of β 4, negative and positive β 6 values affect the fusion cross-section and have a small effect on the barrier distribution.

Keywords

nuclear deformation fusion cross-section barrier distribution 

PACS

21.10.G 25.70.J 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Hagino, N. Takigawa and S. Kuyucak, Phys. Rev. Lett. 79 (1997) 2943; N. Takigawa, Phys. Rev. C61 (2000) 044607.CrossRefADSGoogle Scholar
  2. 2.
    C.Y. Wong, Phys. Rev. Lett. 31 (1973) 766; L.C. Vaz and J.M. Alexander, Phys. Rev. C10 (1974) 464.CrossRefADSGoogle Scholar
  3. 3.
    W. Reisdorf et al., Phys. Rev. Lett. 49 (1982) 1811; R.G. Stokstad et al., Phys. Rev. Lett. 41 (1978) 465; Phys. Rev. C21 (1980) 2427.CrossRefADSGoogle Scholar
  4. 4.
    T. Rumin, K. Hagino and N. Takigawa, Phys. Rev. C61 (1999) 14605.CrossRefGoogle Scholar
  5. 5.
    C.R. Morton et al., Phys. Rev. C64 (2001) 034604.CrossRefADSGoogle Scholar
  6. 6.
    I.R. Leigh et al., Phys. Rev. C52 (1995) 3151.CrossRefADSGoogle Scholar
  7. 7.
    M. Ismail and Kh.A. Ramadan, J. Phys. G26 (2000) 1621.ADSGoogle Scholar
  8. 8.
    N. Anan Traman, H. Toki and G.F. Bertsch, Nucl. Phys. A398 (1983) 269.CrossRefGoogle Scholar
  9. 9.
    D.T. Khoa et al., Phys. Rev. Lett. 74 (1995) 34.CrossRefADSGoogle Scholar
  10. 10.
    D.T. Khoa, G.R. Satchler and W. von Oertzen, Phys. Rev. C56 (1997) 954.CrossRefADSGoogle Scholar
  11. 11.
    G. Bertsch et al., Nucl. Phys. A284 (1977) 399.CrossRefGoogle Scholar
  12. 12.
    M. Ismail, A.Y. Ellithi, Chaos, Solitons and Fractals. 14 No. 9, (2002) 1425; M. Ismail, A.Y. Ellithi and F. Salah, Phys. Rev. C66 (2001) 017601.CrossRefGoogle Scholar
  13. 13.
    M. Ismail, M.M. Osman and F. Salah, Phys. Lett. B378 (1996) 4; M. Ismail, F. Salah and M.M. Osman, Phys. Rev. C54 (1996) 3306; Phys. Rev. C60 (1999) 037603.Google Scholar
  14. 14.
    M. Ismail, A. Ghazal and H. Abou Zahra, J. Phys. G25 (1999) 2137.ADSGoogle Scholar
  15. 15.
    M.J. Rhoades-Brown, V.E. Oberacker, M. Sweiwert and W. Greiner, Z. Phys. A310 (1983) 287.ADSGoogle Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  • M. Ismail
    • 1
  • M. M. Osman
    • 1
  • H. El Gebaly
    • 1
  • H. Abou-Shady
    • 1
  1. 1.Physics Department, Faculty of ScienceCairo UniversityCairoEgypt

Personalised recommendations