Skip to main content
Log in

The percolation mechanism for fragmentation of nuclei using Monte Carlo technique

  • Published:
Acta Physica Hungarica A) Heavy Ion Physics

Abstract

A statistical bond-percolation model for the fragmentation has been applied to the proton-induced reactions assuming a lattice structure to the prefragment nucleus and using the Monte Carlo technique to determine the bond to be broken. The model succeeded to reproduce the essential features of the mass yield curves for the p-Cu reaction at 3.9 GeV and to describe qualitatively the charge and the multiplicity distributions of the projectile fragments for the 28Si interactions with the quasi-free emulsion nucleon at 3.7 AGeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Hauger et al., Phys. Rev. C 57 (1998) 764.

    Article  ADS  Google Scholar 

  2. R.W. Minich et al., Phys. Lett. B118 (1982) 458.

    ADS  Google Scholar 

  3. J.B. Elliott et al., Phys. Rev. C 59 (1999) 550.

    Article  ADS  Google Scholar 

  4. W.A. Friedman and W.G. Lynch, Phys. Rev. C 28 (1983) 950.

    Article  ADS  Google Scholar 

  5. J. Aichelin, J. Hüfner and R. Ibarra, Phys. Rev. C 30 (1984) 107; J. Aichelin and J. Hüfner, Phys. Lett. B136 (1984) 15.

    Article  ADS  Google Scholar 

  6. X. Campi et al., Phys. Lett. B142 (1984) 8.

    ADS  Google Scholar 

  7. J.B. Elliott et al., Phys. Rev. Lett. 85 (2000) 1194.

    Article  ADS  Google Scholar 

  8. J.B. Elliott et al., Phys. Rev. C 55 (1997) 1319.

    Article  ADS  Google Scholar 

  9. S.S. Abdel-Aziz, A. El-Naghy and M. Mohery, 26th International Cosmic Rays Conference (ICRC 99), Salt Lake City, Utah, 17–25 Aug., HE.1.1.09 (1999) 33.

  10. D. Stauffer, Phys. Rep. 54 (1979) 1; D. Stauffer, Introduction to Percolation Theory, Taylor and Francis, London, 1985.

    Article  ADS  Google Scholar 

  11. A. Rodrigues et al., Phys. Lett. B458 (1999) 402.

    ADS  Google Scholar 

  12. C. Cerruti et al., Nucl. Phys. A476 (1988) 74; Nucl. Phys. A492 (1989) 322.

    ADS  Google Scholar 

  13. O. Knospe, R. Schmidt and H. Schulz, Phys. Lett. B182 (1986) 293.

    ADS  Google Scholar 

  14. W. Bauer, D.R. Dean, U. Mosel and U. Post, Phys. Lett. B150 (1985) 53.

    ADS  Google Scholar 

  15. W. Bauer, U. Post, D.R. Dean and U. Mosel, Nucl. Phys. A452 (1986) 699.

    ADS  Google Scholar 

  16. W. Bauer, Phys. Rev. C 38 (1988) 1297.

    Article  ADS  Google Scholar 

  17. A.J. Cole, et al., Z. Phys. A353 (1995) 279.

    ADS  Google Scholar 

  18. M.I. Adamovich et al., Z. Phys. A351 (1995) 311.

    ADS  Google Scholar 

  19. W. Bauer and A. Botvina, Phys. Rev. C 52 (1995) 1760.

    Article  ADS  Google Scholar 

  20. T. Li et al., Phys. Rev. Lett. 70 (1993) 1924.

    Article  ADS  Google Scholar 

  21. T. Li et al., Phys. Rev. C 49 (1994) 1630.

    Article  ADS  Google Scholar 

  22. D.W. Heermann and D. Stauffer, Z. Phys. B44 (1981) 339.

    Article  ADS  Google Scholar 

  23. J. Németh, M. Barranco, J. Desbois and C. Ngô, Z. Phys. A325 (1986) 347.

    ADS  Google Scholar 

  24. J. Desbois, Preprint IPNO/TH 86-59 (1986).

  25. J. Desbois, R. Boisgard, C. Ngo and J. Németh, Z. Phys. A328 (1987) 101.

    ADS  Google Scholar 

  26. J. Desbois, Nucl. Phys. A466 (1987) 724.

    ADS  Google Scholar 

  27. C. Ngô et al., Nucl. Phys. A471 (1987) 381c.

    ADS  Google Scholar 

  28. S. Redner, J. Stat. Phys. 29 (1982) 309.

    Article  ADS  Google Scholar 

  29. J. Hufner, Phys. Rep. 125 (1985) 129.

    Article  ADS  Google Scholar 

  30. X. Campi, J. Phys. A 19 (1986) L917.

    Article  ADS  Google Scholar 

  31. H. Ngô et al., Z. Phys. A337 (1990) 81.

    ADS  Google Scholar 

  32. A.S. Botvina et al., Yad. Fiz. 57 (1994) 667.

    Google Scholar 

  33. A.S. Botvina et al., Sov. J. Nucl. Phys. 57 (1994) 628.

    Google Scholar 

  34. G. Saver, H. Chandra and U. Mosel, Nucl. Phys. A264 (1976) 221.

    ADS  Google Scholar 

  35. H.R. Jaqaman, A.Z. Mekjian and L. Zamick, Phys. Rev. C 27 (1983) 2782.

    Article  ADS  Google Scholar 

  36. A.L. Goodman, J.I. Kapusta and A.Z. Mekjian, Phys. Rev. C 30 (1984) 851.

    Article  ADS  Google Scholar 

  37. H.R. Jaqaman, A.Z. Mekjian and L. Zamick, Phys. Rev. C 29 (1984) 2067.

    Article  ADS  Google Scholar 

  38. P. Bonche, S. Levit and D. Vautherian, Nucl. Phys. A436 (1985) 265.

    ADS  Google Scholar 

  39. S. Levit and P. Bonche, Nucl. Phys. A437 (1985) 426.

    ADS  Google Scholar 

  40. D.R. Dean and U. Mosel, Proc. 23rd Int. Winter Meeting on Nuclear Physics, Bormio, 1985, p. 798.

  41. A. Vicentini et al., Phys. Rev. C 31 (1985) 1783.

    Article  ADS  Google Scholar 

  42. W.A. Friedman and W.G. Lynch, Phys. Rev. C 28 (1983) 16.

    Article  ADS  Google Scholar 

  43. J. Randrup and S.E. Koonin, Nucl. Phys. A356 (1981) 223.

    ADS  Google Scholar 

  44. D.H.E. Gross, Nucl. Phys. A428 (1984) 313c.

    ADS  Google Scholar 

  45. M.E. Fischer, Physics 3 (1967) 255.

    Google Scholar 

  46. J. Hufner and D. Mukhopadhyay, Phys. Lett. B173 (1986) 373.

    ADS  Google Scholar 

  47. A.S. Hirsch et al., Phys. Rev. C 29 (1984) 508.

    Article  ADS  Google Scholar 

  48. L.G. Sobotka and L.G. Moretto, Phys. Rev. C 31 (1985) 668.

    Article  ADS  Google Scholar 

  49. L.P. Csernai and J.I. Kapusta, Phys. Rep. 131 (1986) 223.

    Article  ADS  Google Scholar 

  50. W. Bauer, Proc. 7th High Energy Heavy Ion Study, GSI Rep., Darmstadt, . Oct. 1984.

  51. J. Gosset et al., Phys. Rev. C 16 (1977) 629; A. Mekjian, Phys. Rev. C 17 (1978) 1051.

    Article  ADS  Google Scholar 

  52. J.B. Cumming et al., Phys. Rev. C 10 (1974) 739.

    Article  ADS  Google Scholar 

  53. G. English, Y.W. Yu and N.T. Porile, Phys. Rev. C 10 (1974) 2281.

    Article  ADS  Google Scholar 

  54. J.R. Grover, Phys. Rev. 126 (1962) 1540.

    Article  ADS  Google Scholar 

  55. S.B. Kaufman et al., Phys. Rev. C 14 (1976) 1121.

    Article  MathSciNet  ADS  Google Scholar 

  56. D.K. Scott, Nucl. Phys. A409 (1983) 291c; J.A. Lopez and P.J. Siemens, Nucl. Phys. A431 (1984) 728.

    ADS  Google Scholar 

  57. D.H. Boal, MSU Preprint MSUCL-443 (1983).

  58. A.S. Goldhaber, Phys. Lett. B47 (1974) 306.

    ADS  Google Scholar 

  59. H.H. Heckman et al., Phys. Rev. Lett. 28 (1972) 236.

    Article  Google Scholar 

  60. C.J. Waddington and P.S. Freier, Phys. Rev. C 31 (1985) 888.

    Article  ADS  Google Scholar 

  61. X. Campi, Phys. Lett. B208 (1988) 351.

    ADS  Google Scholar 

  62. B. Jakobsson et al., Nucl. Phys. A509 (1990) 195.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Naghy, A., Mohery, M. & Gad, K.H. The percolation mechanism for fragmentation of nuclei using Monte Carlo technique. Acta Physica Hungarica A 15, 155–171 (2002). https://doi.org/10.1556/APH.15.2002.1-2.8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1556/APH.15.2002.1-2.8

Keywords

PACS

Navigation