Advertisement

Acta Geodaetica et Geophysica Hungarica

, Volume 47, Issue 1, pp 69–77 | Cite as

Geomechanical time series and its singularity spectrum analysis

  • A. A. LyubushinEmail author
  • Z. Kaláb
  • M. Lednická
Article
  • 42 Downloads

Abstract

The multifractal analysis is applied to the study of geomechanical monitoring time series. Estimation of singularity spectra parameters within moving time window for this monitoring time series provides a possibility for splitting the history of observations into few adjacent fragments which could reflect e.g. hidden different states of the rock massif in the vicinity of measuring station. In this contribution, analysis of time series of measured distances is presented. A laser distance meter is used for measuring the height of a large chamber in the medieval Jeroným Mine (Czech Republic). This time series separation into individual segments using singularity spectra parameters is important for possible comprehensive analysis of data in individual time periods and/or between individual time periods.

Keywords

geomechanical time series laser distance meter singularity spectrum time series segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Currenti G, del Negro C, Lapenna V, Telesca L 2005: Natural Hazards and Earth System Sciences, 5, 555–559.CrossRefGoogle Scholar
  2. Feder J 1989: Fractals. Plenum Press, New YorkGoogle Scholar
  3. Fischer T, Horálek J, Michálek J, Boušková A 2010: J. Seismol., 14, 665–682.CrossRefGoogle Scholar
  4. Horálek J, Fischer T, Boušková A, Michálek J, Hrubcová P 2009: Stud. geophys. geod., 53, 351–358.CrossRefGoogle Scholar
  5. Ida Y, Hayakawa M, Adalev A, Gotoh K 2005: Nonlinear Processes in Geophysics, 12, 157–162.CrossRefGoogle Scholar
  6. Kaláb Z, Hrubešová E, Lednická M 2008a: In: Zeszyty Naukowe Politechniki Śla̧skiej, Ser. Górnictwo z. 283, No. 1781, Gliwice, 61–70.Google Scholar
  7. Kaláb Z, Knejzlík J, Kořínek R, Kukutsch R, Lednická M, Žůrek P 2008b: Acta Geodyn. Geomater., 5, 213–223.Google Scholar
  8. Kaláb Z, Lednická M, Knejzlík J, Hrubešová E 2010a: Górnictwo i geologia. Kwartalnik, 5, No. 2, 67–77.Google Scholar
  9. Kaláb Z, Lednická M, Knejzlík J, Telesca L 2010b: Acta Geodyn. Geomater., 7, 469–475.Google Scholar
  10. Kantelhardt J W, Zschiegner S A, Konscienly-Bunde E, Havlin S, Bunde A, Stanley H E 2002: Physica A, 316, 87–114.CrossRefGoogle Scholar
  11. Knejzlík J, Kaláb Z, Lednická M, Staš L 2011: In: Geophysics in mining and environmental protection. Ser. Geoplanet: Earth and Planetary Sciences. A F Idziak and R Dubiel eds, Springer-Verlag, Berlin, Heidelberg, 59–70.Google Scholar
  12. Lyubushin A A 2009: Izvestiya, Phys. Solid Earth, 45, 381–394.CrossRefGoogle Scholar
  13. Lyubushin A A 2010: In: Synchronization and triggering: From fracture to earthquake processes, GeoPlanet: Earth and Planetary Sciences 1. V de Rubeis et al. eds, Springer-Verlag, Berlin, Heidelberg, Chapter 15, 253–272.Google Scholar
  14. Lyubushin A A, Sobolev G A 2006: Izvestiya, Phys. Solid Earth, 42, 734–744.CrossRefGoogle Scholar
  15. Ramirez-Rojas A, Muñoz-Diosdado A, Pavía-Miller C G, Angulo-Brown F 2004: Natural Hazards Earth System Sci., 4, 703–709.CrossRefGoogle Scholar
  16. Taqqu M S 1988: Self-similar processes. Encyclopedia of statistical sciences. Vol. 8, Wiley, New York, 352–357.Google Scholar
  17. Telesca L, Colangelo L, Lapenna V 2005: Natural Hazards Earth System Sci., 5, 673–677.CrossRefGoogle Scholar
  18. Žůrek P, Kořínek R 2001/2002: J. Mining, Geol. Sci., Vol. 40–41, 51–72.Google Scholar

Copyright information

© Akadémiai Kiadó 2012

Authors and Affiliations

  1. 1.Institute of Physics of the Earth Russian Academy of SciencesMoscowRussia
  2. 2.Institute of GeonicsAcademy of Sciences of the Czech Republic OstravaCzech Republic

Personalised recommendations