Skip to main content
Log in

A theory on geoid modelling by spectral combination of data from satellite gravity gradiometry, terrestrial gravity and an Earth Gravitational Model

  • Published:
Acta Geodaetica et Geophysica Hungarica Aims and scope Submit manuscript

Abstract

In precise geoid modelling the combination of terrestrial gravity data and an Earth Gravitational Model (EGM) is standard. The proper combination of these data sets is of great importance, and spectral combination is one alternative utilized here. In this method data from satellite gravity gradiometry (SGG), terrestrial gravity and an EGM are combined in a least squares sense by minimizing the expected global mean square error. The spectral filtering process also allows the SGG data to be downward continued to the Earth’s surface without solving a system of equations, which is likely to be ill-conditioned. Each practical formula is presented as a combination of one or two integral formulas and the harmonic series of the EGM.

Numerical studies show that the kernels of the integral part of the geoid and gravity anomaly estimators approach zero at a spherical distance of about 5°. Also shown (by the expected root mean square errors) is the necessity to combine EGM08 with local data, such as terrestrial gravimetric data, and/or SGG data to attain the 1-cm accuracy in local geoid determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arabelos D, Tscherning C C 1995: J. Geophys. Res., 100, No. B11, 22009–22015.

    Article  Google Scholar 

  • Arabelos D, Tscherning C C 1999: Phys. Chem. Earth (A), 24, 19–25.

    Article  Google Scholar 

  • Bruinsma S L, Marty J C, Balmino G, Biancale R, Förste C, Abrikosov O, Neumayer H 2010: GOCE Gravity Field Recovery by Means of the Direct Numerical Method. Presented at the ESA Living Planet Symposium, Bergen, Norway

  • ESA 1999: Gravity Field and Steady-State Ocean Circulation Mission, ESA SP-1233(1). Report for mission selection of the four candidate earth explorer missions. ESA Publications Division

  • Eshagh M 2009: On satellite gravity gradiometry. Doctoral dissertation in Geodesy, Royal Institute of Technology (KTH), Stockholm, Sweden

    Google Scholar 

  • Eshagh M 2010: Acta Geophys., 59, 29–54.

    Article  Google Scholar 

  • Freeden W, Michel V 2003: Multiscale Potential Theory, with applications to Geosciences. Birkhäuser Boston, USA

    Google Scholar 

  • Heiskanen W, Moritz H 1967: Physical geodesy. W H Freeman and Company, San Francisco and London

    Google Scholar 

  • Janak J, Fukuda Y, Xu P 2009: Earth Planets Space, 61, 835–843.

    Google Scholar 

  • Kotsakis C 2007: Geophys. J. Int., 171, 509–522.

    Article  Google Scholar 

  • Metzler B, Pail R 2005: Stud. Geophys. Geod., 49 441–462.

    Article  Google Scholar 

  • Migliaccio F, Reguzzoni M, Sansò F, Tscherning C C, Veicherts M 2010: GOCE data analysis: the space-wise approach and the first space-wise gravity field model. Proceedings of the ESA Living Planet Symposium, Bergen, Norway

  • Pail R, Goiginger H, Mayrhofer R, Schuh W D, Brockmann J M, Krasbutter I, Hoeck E, Fecher T 2010: GOCE gravity field model derived from orbit and gradiometry data applying the time-wise Method. Proceedings of the ESA Living Planet Symposium, Bergen, Norway

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W D, Hoeck E, Reguzzoni M, Brockmann J M, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning C C 2011: J. Geod., 85, 819–843.

    Article  Google Scholar 

  • Pavlis N, Holmes S A, Kenyon S C, Factor J K 2008: An Earth Gravitational model to degree 2160: EGM08. Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria

    Google Scholar 

  • Reed G B 1973: Application of kinematical geodesy for determining the shorts wavelength component of the gravity field by satellite gradiometry. Ohio state University, Dept. of Geod. Science, Rep. No. 201, Columbus, Ohio

    Google Scholar 

  • Schuh W D, Brockmann J M, Kargoll B, Krasbutter I, Pail R 2010: Refinement of the stochastic model of GOCE scientific data and its effect on the in-situ gravity field solution. Proceedings of the ESA Living Planet Symposium, Bergen, Norway

  • Sjöberg L E 1980: Gerlands Beitr. Geophys., 89, 371–377.

    Google Scholar 

  • Sjöberg L E 1981: An. Geophys. 37, 25–30.

    Google Scholar 

  • Sjöberg L E 1986: Boll. Geod. Sci. Aff. 45, 229–248.

    Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F 2005: J. Geod., 79, 467–478.

    Article  Google Scholar 

  • Tscherning C C 1989: Ricerche Geod. Topog. Fotogr., 5, 139–146.

    Google Scholar 

  • Tscherning C C, Arabelos D 2011: Gravity anomaly and gradient recovery from GOCE gradient data using LSC and comparisons with known ground data. Proc. 4th International GOCE user workshop, ESA SP-696.

  • Tscherning C C, Rapp R 1974: Closed covariance expressions for gravity anomalies, geoid undulations and deflections of vertical implied by anomaly degree variance models. Rep. 355, Dept. Geod. Sci. Ohio State University, Columbus, USA

    Google Scholar 

  • Tscherning C C, Forsberg R, Vermeer M 1990: Methods for regional gravity field modelling from SST and SGG data. Reports of the Finnish Geodetic Institute, No. 90, 2, Helsinki

  • Xu P 1992: Geophys. J. Int., 110, 321–332.

    Article  Google Scholar 

  • Xu P 1998: Geophys. J. Int., 135, 505–514.

    Article  Google Scholar 

  • Xu P 2009: Geophys. J. Int., 179, 182–200.

    Article  Google Scholar 

  • Wenzel H-G 1981: ZfV, 106, 102–111.

    Google Scholar 

  • Wenzel H-G 1982: Geoid computation by least squares spectral combination using integral kernels. Presented to Symposium 4b, IAG General Meeting, Tokyo

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Sjöberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjöberg, L.E., Eshagh, M. A theory on geoid modelling by spectral combination of data from satellite gravity gradiometry, terrestrial gravity and an Earth Gravitational Model. Acta Geod. Geoph. Hung 47, 13–28 (2012). https://doi.org/10.1556/AGeod.47.2012.1.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/AGeod.47.2012.1.2

Keywords

Navigation