Skip to main content
Log in

Review article: Analysing the crack coalescence in brittle rock materials

  • Published:
Acta Geodaetica et Geophysica Hungarica Aims and scope Submit manuscript

Abstract

The understanding of fracture has tended to follow great public disasters (e.g. over 200 US ships suffered due to catastrophic failure during WW II, later several jet air-craft damaged, destroying some bridges and buildings, etc). Rock fracture mechanics dates back to early 60-s and its application to rock blast problems, collapses deep gold mines in South Africa, earthquake disasters, etc. Pure shear mode (Mode I) or mixed tension and shear mode (Mode I and II) fracturing are the most important in rock mechanics and geophysics. The goal of this paper is to summarize the existing fracture criteria and the observed crack growth firstly from single flaws, secondly from multiply (two) flaws. Analysing the fracture propagations different types of coalescence can be determined and classified. Using these modelling and analysing the observed patterns, for example we could forecast the new failures after the earthquakes or calculating the stability of rock slopes, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams M, Sines G 1978: Tectonophys., 49, 97–118.

    Article  Google Scholar 

  • Awaji H, Sato S 1978: J. Eng. Mat. Techn., 100, 175–172.

    Article  Google Scholar 

  • Bieniawski Z T 1967: Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 4, 395–430.

    Article  Google Scholar 

  • Bobet A 1997: Fracture coalescence in rock materials: experimental observations and numerical predictions. PhD thesis, MIT

  • Bobet A 2000: Eng. Frac. Mech., 66, 187–219.

    Article  Google Scholar 

  • Bobet A 2001: Int. J. Rock. Mech. Min. Sci., 38, 1121–1134.

    Article  Google Scholar 

  • Bobet A, Einstein H H 1998: Int. J. Rock. Mech. Min. Sci., 35, 863–889.

    Article  Google Scholar 

  • Bobet A, Einstein H H 2004: Eurock2004, 475–478.

  • Bowie O L, Freeze D E 1972: Eng. Frac. Mech., 4, 315–320.

    Article  Google Scholar 

  • Brace W, Bombolakis E 1963: J. Geophys. Res., 68, 3709–3713.

    Article  Google Scholar 

  • Chen G, Kemeny J, Harpalani S 1992: Fracture Propagation and Coalescence in Marble Plates with Particular Application to Rock. Symp. Fract. and Jointed Rock Mass: 443–448.

  • Erdogan F, Sih G C 1963: ASME J. Basic Eng., 85, 519–527.

    Article  Google Scholar 

  • Griffith A A 1921: Phil. Trans. Roy. Soc., A.221, 163–198.

    Google Scholar 

  • Griffith A A 1924: Theory of rupture. Proc. 1st Int. Cong. Appl. Mech., Delft, 55–63.

    Google Scholar 

  • Hoek E, Bieniawsi Z T 1965: Int. J. Fract. Mech., 1, 137–155.

    Google Scholar 

  • Horii H, Nemat-Nasser S 1986: Phil. Trans. Roy. Soc. London, 319, 337–374.

    Article  Google Scholar 

  • Hussein M A, Pu E L, Underwood J H 1974: ASTM STP 560: 2–28.

    Google Scholar 

  • Ingraffea A R, Heuze F 1980: Int. J. Num. Analyt. Met. in Geomech., 4, 24–43.

    Google Scholar 

  • Jiefan H C, Ganglin Z, Yonghong Z, Ren W 1990: Tectonophys., 175, 269–284.

    Article  Google Scholar 

  • Lajtai E 1974: Int. J. Fract., 10, 525–536.

    Article  Google Scholar 

  • Lemaitre J 1986: Eng. Frac. Mech., 25, 523–537.

    Article  Google Scholar 

  • Lim I L, Johnston I W, Choi S K, Boland J N 1994: Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 31, 199–212.

    Google Scholar 

  • McClintock F A, Walsh P F 1962: In: Proc. 4th National Cong. Appl. Mech., 1015–1021.

  • Petit J-P, Barquins M 1988: Tectonics, 7, 1243–1256.

    Article  Google Scholar 

  • Reyes O 1991: Experimental Study and Analytical Modelling of Compressive Fracture in Brittle Materials. Ph.D. Thesis, MIT, Cambridge, USA

    Google Scholar 

  • Reyes O, Einstein H H 1991: In: Proc. 7th Cong. ISRM, 1, 333–340.

    Google Scholar 

  • Richard H A 1984: Examination of brittle fracture criteria for overlapping mode I and mode II loading applied to cracks. Application of Fracture Mech. to Mat. Struc., 309–316.

  • Sagong M, Bobet A 2002: Int. J. Rock Mech. Min. Sci., 39, 229–241.

    Article  Google Scholar 

  • Shah S P 1974: ASTM STO 560, 29–52.

    Google Scholar 

  • Shen B, Stephanson O 1994: Eng. Frac. Mech., 47, 177–189.

    Article  Google Scholar 

  • Shen B, Stephanson O, Einstein H H, Ghahreman B 1995: J. Geophys. Res., 100, 5975–5990.

    Article  Google Scholar 

  • Sih G C 1974: Int. J. Fract., 10, 305–321.

    Article  Google Scholar 

  • Sih G C, Cha B C K 1974: Eng. Fract. Mech., 6, 699–723.

    Article  Google Scholar 

  • Taha N, Swartz S 1989: In: Fracture of Concrete and Rocks: Recent Developments, S P Shad, S E Swartz, B Barr eds, 5–17.

  • Tang C A, Lin P, Wong R H C, Chau K T 2001: Int. J. Rock. Mech. Min. Sci., 38, 925–939.

    Article  Google Scholar 

  • Theocaria P S, Andrianopoulus N P 1982: Eng. Fract. Mech., 16, 425–432.

    Article  Google Scholar 

  • Vásárhelyi B, Bobet A 2000: Rock Mech. Rock Eng. 33, 119–139.

    Article  Google Scholar 

  • Wang R, Zhao Y, Chen Y, Yan H, Yin Y, Yao C, Zhang H 1987: Tectonophys., 144, 141–150.

    Article  Google Scholar 

  • Wong R H C, Chau K T 1998: Int. J. Rock. Mech. Min. Sci., 35, 147–164.

    Article  Google Scholar 

  • Wu E M 1967: ASME J. Appl. Mech., 34, 967–974.

    Article  Google Scholar 

  • Yehia N A B 1985: Eng. Fract. Mech., 22, 189–199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vásárhelyi, B. Review article: Analysing the crack coalescence in brittle rock materials. Acta Geod. Geoph. Hung 41, 181–198 (2006). https://doi.org/10.1556/AGeod.41.2006.2.4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/AGeod.41.2006.2.4

Keywords

Navigation