Skip to main content
Log in

Gravity gradiometry: From Loránd Eötvös to modern space age

  • Published:
Acta Geodaetica et Geophysica Hungarica Aims and scope Submit manuscript

Abstract

Loránd Eötvös’ torsion balance yields the local structure of the earth’s gravity field with very high precision, still comparable to present days standards. The recently launched NASA satellite mission GRACE and the approved ESA mission GOCE (launch in 2005) apply the same measurement principle in space. It counteracts the natural attenuation with growing distance from the earth’s surface of the gravitational attraction. As a consequence, even from space the global gravity field will be mapped with unprecedented resolution and accuracy. Also temporal variations due to mass changes in the atmosphere, oceans, ice covers, groundwater tables and inside the earth are expected to be discernible. Geodesy, solid earth physics, oceanography and sea level research will greatly benefit from the detailed knowledge of the earth’s gravity field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biró P 1989: In: Gravity, Gradionietry and Gravimetry. R Rummel and R G Hipkin eds, IAG-Symposia 103, 1–8, Springer, Heidelberg

    Google Scholar 

  • ESA 1999: The four candidate earth explorer core missions — Gravity Field and Steady State Ocean Circulation Mission, European Space Agency, SP-1233 (1).

  • Feynman R P, Leighton R B, Sands M 1983: The Feynman lectures on physics, Addison Wesley, Reading Ma.

    Google Scholar 

  • Fischbach E, Sudarsky D, Szafer A, Talmadge C, Aronson S H 1986: Physical Review Letters, 56, 1, 3–6.

    Article  Google Scholar 

  • Jung K 1961: Schwerekraftverfahren in der angewandten Geophysik. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  • Misner C W, Thorne K S, Wheeler J A 1970: Gravitation. Freeman, San Francisco

    Google Scholar 

  • Müller J 2001: In: Theorie, technische Realisierung und wissenschaftliche Nutzung. Deutsche Geodätische Kommission, C-541, München

    Google Scholar 

  • NRC 1997: Satellite gravity and the geosphere, committee on earth gravity from space, National Research Council. National Academy Press, Washington, D.C.

    Google Scholar 

  • Rummel R 1986: In: Mathematical and Numerical Techniques in Physical Geodesy, H Sünkel ed., Lectures Notes in Earth Sciences 7, 318–357.

  • Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P 2002: J. of Geodynamics, 33, Nos 1–2, 3–20.

    Article  Google Scholar 

  • Selényi P 1953: Roland Eötvös Gesammelte Arbeiten. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Tóth Gy, Rózsa Sz, Ádám J, Tziavos J N 2002: In: Vistas for Geodesy in the New Millenium, J Adám and K P Schwarz eds, IAG-Symposia 125, Springer, Heidelberg (in press)

    Google Scholar 

  • Wells W C ed. 1984: Spaceborne gravity gradiometers. NASA conference publication 2305, Greenbelt, Maryland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rummel.

Additional information

Inaugural Lecture, Hungarian Academy of Sciences, Budapest, March 25, 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rummel, R. Gravity gradiometry: From Loránd Eötvös to modern space age. Acta Geod. Geoph. Hung 37, 435–444 (2002). https://doi.org/10.1556/AGeod.37.2002.4.7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/AGeod.37.2002.4.7

Keywords

Navigation