Advertisement

Journal of Flow Chemistry

, Volume 7, Issue 3–4, pp 96–105 | Cite as

Perspective Article: Flow Synthesis of Functional Materials

  • Victor Sebastian
  • Saif A. Khan
  • Amol A. Kulkarni
Open Access
Perspectives
  • 56 Downloads

Abstract

Continuous-flow synthesis of specific functional materials is now seen as a reliable synthesis approach that gives consistent product properties. This perspective article aims to survey recent work in some of the relevant areas and to identify new domains where flow synthesis of functional materials can be better than the conventional synthesis methods. It also emphasizes the need for developing high-throughput integrated synthesis and screening systems for almost all functional materials so that laboratory-scale recipes can be transformed into reliable manufacturing processes. New areas relevant to functional materials which have remained unexplored in flow synthesis are also highlighted.

Keywords

Flow synthesis functional materials nanoparticles nanocatalysts MOFs energy storage devices 

References

  1. 1.
    Stark, W. J.; Stoessel, P. R.; Wohlleben, W.; Hafner, A. Chem. Soc. Rev 2015, 44, 5793–5805.CrossRefGoogle Scholar
  2. 2.
    Ma, J. P.; Lee, S. M. Y.; Yi, C. Q.; Li, C. W. Lab Chip 2017, 17, 209–226.CrossRefGoogle Scholar
  3. 3.
    Marre, S.; Jensen, K. F. Chem. Soc. Rev. 2010, 39, 1183–1202.CrossRefGoogle Scholar
  4. 4.
    Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Science 2001, 294, 1901–1903.CrossRefGoogle Scholar
  5. 5.
    Qing Li, C. W. K.; Shinji, H.; Takashi, O.; Toru, I.; Kikuo, O. Sci. Rep. 2017, 7, 9894.CrossRefGoogle Scholar
  6. 6.
    van den Berg, R.; Prieto, G.; Korpershoek, G.; van der Wal, L. I.; van Bunningen, A. J.; Laegsgaard-Jorgensen, S.; de Jongh, P. E.; de Jong, K. P. Nat. Commun. 2016, 7.Google Scholar
  7. 7.
    Cabeza, V S. Advances in Microfluidics — New Applications in Biology, Energy, and Materials Sciences, Yu, X.-Y., Ed.; InTech: Rijeka, 2016; p. Ch. 17.Google Scholar
  8. 8.
    Larrea, A.; Clemente, A.; Luque-Michel, E.; Sebastian, V. Chem. Eng. J. 2017, 316, 663–672.CrossRefGoogle Scholar
  9. 9.
    Lee, S. K.; Liu, X. Y.; Cabeza, V. S.; Jensen, K. F. Lab Chip 2012, 12, 4080–4084.CrossRefGoogle Scholar
  10. 10.
    Gomez, L.; Arruebo, M.; Sebastian, V.; Gutierrez, L.; Santamaria, J. J. Mater. Chem. 2012, 22, 21420–21425.CrossRefGoogle Scholar
  11. 11.
    Sebastian, V.; Lee, S.-K.; Jensen, K. F. Nanoscale 2014, 6, 13228–13235.CrossRefGoogle Scholar
  12. 12.
    Sebastian, V.; Basak, S.; Jensen, K. F. Aiche J. 2016, 62, 373–380.CrossRefGoogle Scholar
  13. 13.
    Larrea, A.; Sebastian, V; Ibarra, A.; Arruebo, M.; Chem. Mater 2015, 27, 4254–4260.CrossRefGoogle Scholar
  14. 14.
    Sebastian, V.; Smith, C. D.; Jensen, K. F. Nanoscale 2016, 8, 7534–7543.CrossRefGoogle Scholar
  15. 15.
    Sebastian, V.; Jensen, K. F. Nanoscale 2016, 8, 15288–15295.CrossRefGoogle Scholar
  16. 16.
    Sebastián, V.; Zaborenko, N.; Gu, L.; Jensen, K. F. Cryst. Growth Des. 2017, 17, 2700–2710.CrossRefGoogle Scholar
  17. 17.
    Gomez, L.; Sebastian, V.; Irusta, S.; Ibarra, A.; Arruebo, M.; Santamaria, J. Lab Chip 2014, 14, 325–332.CrossRefGoogle Scholar
  18. 18.
    Ortiz de Solorzano, I.; Prieto, M.; Mendoza, G.; Alejo, T.; Irusta, S.; Sebastian, V; Arruebo, M. ACS Appl. Mater Interfaces 2016, 8, 21545–21554.CrossRefGoogle Scholar
  19. 19.(a)
    Baek, J.; Allen, P. M.; Bawendi, M. G.; Jensen, K. F. Angew. Chem., Int. Ed. 2011, 50, 627–630CrossRefGoogle Scholar
  20. 19.(b)
    Marre, S.; Roig, Y.; Aymonier, C. J. Supercrit. Fluid. 2012, 66, 251–264.CrossRefGoogle Scholar
  21. 20.
    Duraiswamy, S.; Khan, S. A. Part Part Syst. Char. 2014, 31, 429–432.CrossRefGoogle Scholar
  22. 21.(a)
    Phillips, T. W.; Lignos, I. G.; Maceiczyk, R. M.; deMello, A. J.; deMello, J. C. Lab Chip 2014, 14, 3172–3180CrossRefGoogle Scholar
  23. 21.(b)
    Medina-Sanchez, M.; Miserere, S.; Merkoci, A. Lab Chip 2012, 12, 1932–1943CrossRefGoogle Scholar
  24. 21.(c)
    Zhao, C. X.; He, L. Z.; Qiao, S. Z.; Middelberg, A. P. J. Chem. Eng. Sci. 2011, 66, 1463–1479CrossRefGoogle Scholar
  25. 21.(d)
    Chang, C.H.; Paul, B. K.; Remcho, V. T.; Atre, S.; Hutchison, J. E. J. Nanopart. Res. 2008, 10, 965–980CrossRefGoogle Scholar
  26. 21.(e)
    Koehler, J. M. Nanotechnol. Rev. 2014, 3, 1–3CrossRefGoogle Scholar
  27. 21.(f)
    Song, Y. J.; Hormes, J.; Kumar, C. S. S. R. Small 2008, 4, 698–711CrossRefGoogle Scholar
  28. 21.(g)
    Niu, G. D.; Ruditskiy, A.; Vara, M. Chem. Soc. Rev. 2015, 44, 5806–5820.CrossRefGoogle Scholar
  29. 22.(a)
    Wagner, J.; Kohler, J. M. Nano Lett. 2005, 5, 685–691CrossRefGoogle Scholar
  30. 22.(b)
    Cabeza, V. S.; Kuhn, S.; Kulkarni, A. A.; Jensen, K. F. Langmuir 2012, 28, 7007–7013.CrossRefGoogle Scholar
  31. 23.
    Sebastian, V.; Lee, S. K.; Jensen, K. F. Nanoscale 2014, 6, 13228–13235.CrossRefGoogle Scholar
  32. 24.(a)
    Khan, S. A.; Jensen, K. F. Adv. Mater 2007, 19, 2556–2560CrossRefGoogle Scholar
  33. 24.(b)
    Sebastian, V.; Zaborenko, N.; Gu, L.; Jensen, K. F. Cryst. Growth Des. 2017, 17, 2700–2710.CrossRefGoogle Scholar
  34. 25.
    Marre, S.; Adamo, A.; Basak, S.; Aymonier, C.; Jensen, K. F. Ind. Eng. Chem. Res. 2010, 49, 11310–11320.CrossRefGoogle Scholar
  35. 26.
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew. Chem., Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  36. 27.
    Zhang, L.; Wang, Y.; Tong, L. M.; Xia, Y. A. Nano Lett. 2014, 14, 4189–4194.CrossRefGoogle Scholar
  37. 28.
    Roig, Y.; Marre, S.; Cardinal, T.; Aymonier, C. Angew. Chem., Int. Ed. 2011, 50, 12071–12074.CrossRefGoogle Scholar
  38. 29.
    Giroire, B.; Marre, S.; Garcia, A.; Cardinal, T.; Aymonier, C. React. Chem. Eng. 2016, 1, 151–155.CrossRefGoogle Scholar
  39. 30.
    Marre, S.; Park, J.; Rempel, J.; Guan, J.; Bawendi, M. G.; Jensen, K. F. Adv. Mater. 2008, 20, 4830–4834.CrossRefGoogle Scholar
  40. 31.
    Maceiczyk, R. M.; Bezinge, L.; deMello, A. J. React. Chem. Eng. 2016, 1, 261–271.CrossRefGoogle Scholar
  41. 32.
    Jensen, K. F. Chem. Eng. Sci. 2001, 56, 293–303.CrossRefGoogle Scholar
  42. 33.
    Lignos, I.; Maceiczyk, R.; deMello, A. J. Accounts Chem. Res. 2017, 50, 1248–1257.CrossRefGoogle Scholar
  43. 34.(a)
    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nano Lett. 2015, 15, 3692–3696CrossRefGoogle Scholar
  44. 34.(b)
    Lignos, I.; Stavrakis, S.; Nedelcu, G.; Protesescu, L.; Demello, A. J.; Kovalenko, M. V. Nano Lett. 2016, 16, 1869–1877.CrossRefGoogle Scholar
  45. 35.
    Gomez-de Pedro, S.; Salinas-Castillo, A.; Ariza-Avidad, M.; Lapresta- Fernandez, A.; Sanchez-Gonzalez, C.; Martinez-Cisneros, C. S.; Puyol, M.; Capitan-Vallvey, L. F.; Alonso-Chamarro, J. Nanoscale 2014, 6, 6018–6024.CrossRefGoogle Scholar
  46. 36.
    Zhou, J.; Liu, Z.; Li, F. Y. Chem. Soc. Rev. 2012, 41, 1323–1349.CrossRefGoogle Scholar
  47. 37.
    Zhang, X.; Wang, X.-G.; Xie, Z.; Zhou, Z. Green Energy & Environment 2016, 1, 4–17.CrossRefGoogle Scholar
  48. 38.
    Wang, Z.-L.; Xu, D.; Xu, J.-J.; Zhang, X.-B. Chem. Soc. Rev. 2014, 43, 7746–7786.CrossRefGoogle Scholar
  49. 39.(a)
    Batten, M. P.; Rubio-Martinez, M.; Hadley, T.; Carey, K. C.; Lim, K. S.; Polyzos, A.; Hill, M. R. Curr Opin. Chem. Eng. 2015, 8, 55–59CrossRefGoogle Scholar
  50. 39.(b)
    Dunne, P. W.; Lester, E.; Walton, R. I. React. Chem. Eng. 2016, 1, 352–360.CrossRefGoogle Scholar
  51. 40.(a)
    Rubio-Martinez, M.; Batten, M. P.; Polyzos, A.; Carey, K. C.; Mardel, J. I.; Lim, K. S.; Hill, M. R. Sci. Rep. 2014, 4, 5443CrossRefGoogle Scholar
  52. 40.(b)
    Peng, Y. W.; Wong, W. K.; Hu, Z. G.; Cheng, Y. D.; Yuan, D. Q.; Khan, S. A.; Zhao, D. Chem. Mater. 2016, 28, 5095–5101CrossRefGoogle Scholar
  53. 40.(c)
    D’Arras, L.; Sassoye, C.; Rozes, L.; Sanchez, C.; Marrot, J.; Marree, S.; Aymonier, C. New J. Chem. 2014, 38, 1477–1483.CrossRefGoogle Scholar
  54. 41.
    Paseta, L.; Seoane, B.; Julve, D.; Sebastian, V.; Tellez, C.; ACS Appl. Mater. Interfaces 2013, 5, 9405–9410.CrossRefGoogle Scholar
  55. 42.(a)
    Kim Jin-Oh, M. K.-I.; Hyunwoo, N.; Dong-Hwi, K.; Soo-Young, P.; Dong-Pyo, K. Angew Chem. 2016, 55, 7116–7120CrossRefGoogle Scholar
  56. 42.(b)
    Faustini, M.; Kim, J.; Jeong, G. Y.; Kim, J. Y.; Moon, H. R.; Ahn, W. S.; Kim, D. P. J. Am. Chem. Soc. 2013, 135, 14619–14626CrossRefGoogle Scholar
  57. 42.(c)
    Jeong, G. Y.; Ricco, R.; Liang, K.; Ludwig, J.; Kim, J. O.; Falcaro, P.; Kim, D. P. Chem. Mater. 2015, 27, 7903–7909CrossRefGoogle Scholar
  58. 42.(d)
    Yu, L.; Pan, Y. C.; Wang, C. Q.; Zhang, L. X. Chem. Eng. J. 2013, 219, 78–85CrossRefGoogle Scholar
  59. 42.(e)
    Pan, Y. C.; Yao, J. F.; Zhang, L. X.; Xu, N. P. Ind. Eng. Chem. Res. 2009, 48, 8471–8477CrossRefGoogle Scholar
  60. 42.(f)
    Hoang, P. H.; Park, H.; Kim, D. P., J. Am. Chem. Soc. 2011, 133, 14765–14770.CrossRefGoogle Scholar
  61. 43.
    Rubio-Martinez, M.; Leong, T.; Juliano, P.; Hadley, T. D.; Batten, M. P.; Polyzos, A.; Lim, K. S.; Hill, M. R. Rsc Adv. 2016, 6, 5523–5527.CrossRefGoogle Scholar
  62. 44.
    Liu, Z.; Okabe, K.; Anand, C.; Yonezawa, Y.; Zhu, J.; Yamada, H.; Endo, A.; Yanaba, Y.; Yoshikawa, T.; Ohara, K.; Okubo, T.; Wakihara, T. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 14267–14271.CrossRefGoogle Scholar
  63. 45.
    Dumas, A.; Claverie, M.; Slostowski, C.; Aubert, G.; Careme, C.; Le Roux, C.; Micoud, P.; Martin, F.; Aymonier, C. Angew Chem., Int. Ed. 2016, 55, 9868–9871.CrossRefGoogle Scholar
  64. 46.
    Mueller, R.; Jossen, R.; Pratsinis, S. E.; Watson, M.; Akhtar, M. K. J. Am. Ceram. Soc. 2004, 87, 197–202.CrossRefGoogle Scholar
  65. 47.
    Jossen, R.; Mueller, R.; Pratsinis, S. E.; Watson, M.; Akhtar, M. K. Nanotechnology 2005, 16, S609–S617.CrossRefGoogle Scholar
  66. 48.
    Tighe, C. J.; Cabrera, R. Q.; Gruar, R. I.; Darr, J. A. Ind. Eng. Chem. Res. 2013, 52, 5522–5528.CrossRefGoogle Scholar
  67. 49.
    Wegner, K.; Pratsinis, S. E. Chem. Eng. Sci. 2003, 58, 4581–4589.CrossRefGoogle Scholar
  68. 50.
    Wei, F.; Zhang, Q.; Qian, W. Z.; Yu, H.; Wang, Y.; Luo, G. H.; Xu, G. H.; Wang, D. Z. Powder Technol. 2008, 183, 10–20.CrossRefGoogle Scholar
  69. 51.
    Deshpande, J. B.; Kulkarni, A. A. Chem. Eng. Technol. 2017, DOI: 10.1002/ceat.201700035.Google Scholar
  70. 52.
    Wai Kuan Wong, S. K. Y.; Lim, Y. C.; Khan, S. A.; Pelletier, F.; Corbos, E. C. React. Chem. Eng. 2017, 2, 636–641.CrossRefGoogle Scholar
  71. 53.(a)
    Lim, E. K.; Chung, B. H. Nat. Protoc. 2016, 11, 236–251CrossRefGoogle Scholar
  72. 53.(b)
    McCarthy, S. A.; Davies, G. L.; Gunko, Y. K. Nat. Protoc. 2012, 7, 1677–1693CrossRefGoogle Scholar
  73. 53.(c)
    Laurino, P.; Kikkeri, R.; Seeberger, P. H. Nat. Protoc. 2011, 6, 1209–1220.CrossRefGoogle Scholar
  74. 54.
    Krasberg, N. H. L.; Bieringer, T.; Bramsiepe, C.; Kockmann, N. Processes 2014, 2, 265–292.CrossRefGoogle Scholar
  75. 55.
    Maceiczyk, R. M.; Lignos, I. G.; deMello, A. J. Curr. Opin. Chem. Eng. 2015, 8, 29–35.CrossRefGoogle Scholar
  76. 56.
    Krishnadasan, S.; Tovilla, J.; Vilar, R.; deMello, A. J.; deMello, J. C. J. Mater Chem. 2004, 14, 2655–2660.CrossRefGoogle Scholar
  77. 57.
    Yue, J.; Schouten, J. C.; Nijhuis, T. A. Ind. Eng. Chem. Res. 2012, 51, 14583–14609.CrossRefGoogle Scholar
  78. 58.(a)
    Yue, J.; Falke, F. H.; Schouten, J. C.; Nijhuis, T. A. Lab Chip 2013, 13, 4855–4863CrossRefGoogle Scholar
  79. 58.(b)
    Jahn, I. J.; Zukovskaja, O.; Zheng, X. S.; Weber, K.; Bocklitz, T. W.; Cialla-May, D.; Popp, J. Analyst 2017, 142, 1022–1047.CrossRefGoogle Scholar
  80. 59.
    Zmijan, R.; Carboni, M.; Capretto, L.; Stulz, E.; Zhang, X. L. Rsc Adv. 2014, 4, 14569–14572.CrossRefGoogle Scholar
  81. 60.
    Chrimes, A. F.; Khoshmanesh, K.; Stoddart, P. R.; Mitchell, A.; Kalantar-zadeh, K. Chem. Soc. Rev. 2013, 42, 5880–5906.CrossRefGoogle Scholar
  82. 61.
    Salafi, T.; Zeming, K. K.; Zhang, Y. Lab Chip 2017, 17, 11–33.CrossRefGoogle Scholar
  83. 62.
    Squires, T. M.; Quake, S. R. Rev. Mod. Phys. 2005, 77, 977–1026.CrossRefGoogle Scholar
  84. 63.
    Wang, Z. X.; Wu, H. J.; Fine, D.; Schmulen, J.; Hu, Y.; Godin, B.; Zhang, J. X. J.; Liu, X. W. Lab Chip 2013, 13, 2879–2882.CrossRefGoogle Scholar
  85. 64.
    Bhagat, A. A. S.; Bow, H.; Hou, H. W.; Tan, S. J.; Han, J.; Lim, C. T. Med. Biol. Eng. Comput. 2010, 48, 999–1014.CrossRefGoogle Scholar
  86. 65.
    Lee, K.; Shao, H. L.; Weissleder, R.; Lee, H. Acs Nano 2015, 9, 2321–2327.CrossRefGoogle Scholar
  87. 66.
    Zhang, J.; Yan, S.; Yuan, D.; Alici, G.; Nguyen, N. T.; Warkiani, M. E.; Li, W. H. Lab Chip 2016, 16, 10–34.CrossRefGoogle Scholar
  88. 67.
    Shields, C. W.; Reyes, C. D.; Lopez, G. P. Lab Chip 2015, 15, 1230–1249.CrossRefGoogle Scholar
  89. 68.
    Krishnan, M.; Mojarad, N.; Kukura, P.; Sandoghdar, V. Nature 2010, 467, 692–U75.CrossRefGoogle Scholar
  90. 69.
    Inglis, D. W.; Lord, M.; Nordon, R. E. J. Micromech. Microeng. 2011, 21.Google Scholar
  91. 70.
    Sebastian, V.; Arruebo, M.; Santamaria, J. Small 2014, 10, 835–853.CrossRefGoogle Scholar
  92. 71.
    Jensen, K. F. AIChE J. 2017, 63, 858–869.CrossRefGoogle Scholar
  93. 72.
    Gomez, L.; Cebrian, V.; Martin-Saavedra, F.; Arruebo, M.; Vilaboa, N.; Santamaria, J. Mater. Res. Bull. 2013, 48, 4051–4057.CrossRefGoogle Scholar
  94. 73.
    Genov, D. A.; Sarychev, A. K.; Shalaev, V. M.; Wei, A. Nano Lett. 2004, 4, 153–158.CrossRefGoogle Scholar
  95. 74.
    Jiang, X. C.; Zeng, Q. H.; Yu, A. B. Langmuir 2007, 23, 2218–2223.CrossRefGoogle Scholar
  96. 75.
    Uson, L.; Sebastian, V.; Mayoral, A.; Hueso, J. L.; Eguizabal, A.; Arruebo, M. Nanoscale 2015, 7, 10152–10161.CrossRefGoogle Scholar
  97. 76.
    Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Myers, R. M. Angew. Chem., Int. Ed. 2015, 54, 3449–3464.CrossRefGoogle Scholar
  98. 77.
    Adamo, A.; Beingessner, R. L.; Behnam, M.; Chen, J.; Jamison, T. F.; Jensen, K. F.; Monbaliu, J. C. M.; Myerson, A. S.; Revalor, E. M.; Snead, D. R.; Stelzer, T.; Weeranoppanant, N.; Wong, S. Y.; Zhang, P. Science 2016, 352, 61–67.CrossRefGoogle Scholar
  99. 78.
    Wong Wai Kuan, S. K. Y.; Lim, Y. C.; Khan, S. A.; Pelletier, F.; Corbos, E. C. React. Chem. Eng. 2017, 2, 636–641.CrossRefGoogle Scholar
  100. 79.
    Kemal, E.; Abelha, T. F.; Urbano, L.; Peters, R.; Owen, D. M.; Howes, P.; Green, M.; Dailey, L. A. Rsc Advances 2017, 7, 15255–15264.CrossRefGoogle Scholar
  101. 80.
    Abelha, T. F.; Phillips, T. W.; Bannock, J. H.; Nightingale, A. M.; Dreiss, C. A.; Kemal, E.; Urbano, L.; de Mello, J. C.; Green, M.; Dailey, L. A. Nanoscale 2017, 9, 2009–2019.CrossRefGoogle Scholar
  102. 81.
    Lee, C. W.; Ng, D. K. T.; Tan, A. L.; Wang, Q. Optics Letters 2016, 41, 3149–3152.CrossRefGoogle Scholar
  103. 82.
    Jacoby, M. Chem. Eng. News 2017, 95, 26–27.Google Scholar
  104. 83.
    Horn, D. Angew. Makromol. Chem. 1989, 166, 139–153.CrossRefGoogle Scholar
  105. 84.
    DiRocco, D. A.; Ji, Y. N.; Sherer, E. C.; Klapars, A.; Reibarkh, M.; Dropinski, J.; Mathew, R.; Maligres, P.; Hyde, A. M.; Limanto, J.; Brunskill, A.; Ruck, R. T.; Campeau, L. C.; Davies, I. W. Science 2017, 356, 426–429.CrossRefGoogle Scholar
  106. 85.
    Felpin, F. X.; Fouquet, E. Chemsuschem 2008, 1, 718–724.CrossRefGoogle Scholar
  107. 86.(a)
    Tsubogo, T.; Oyamada, H.; Kobayashi, S. Nature 2015, 520, 329–332CrossRefGoogle Scholar
  108. 86.(b)
    Poh, J. S.; Browne, D. L.; Ley, S. V. React. Chem. Eng. 2016, 1, 101–105CrossRefGoogle Scholar
  109. 86.(c)
    Baxendale, I. R.; Ley, S. V; Piutti, C. Angew Chem., Int. Ed. 2002, 41, 2194–2197.CrossRefGoogle Scholar
  110. 87.(a)
    Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. Adv. Mater 2016, 28, 4449–4454CrossRefGoogle Scholar
  111. 87.(b)
    Zarek, M.; Layani, M.; Eliazar, S.; Mansour, N.; Cooperstein, I.; Shukrun, E.; Szlar, A.; Cohn, D.; Magdassi, S. Virtual Phys. Prototyp. 2016, 11, 263–270.CrossRefGoogle Scholar
  112. 88.
    Kim, S. J.; Lee, J. S. Nano Lett. 2010, 10, 2884–2890.CrossRefGoogle Scholar
  113. 89.(a)
    Son, D.; Lee, J.; Qiao, S.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W.; Yang, S.; Park, M.; Shin, J.; Do, K.; Lee, M.; Kang, K.; Hwang, C. S.; Lu, N. S.; Hyeon, T.; Kim, D. H. Nat. Nanotechnol. 2014, 9, 397–404CrossRefGoogle Scholar
  114. 89.(b)
    Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.; Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T. Science 2009, 326, 1516–1519.CrossRefGoogle Scholar
  115. 90.
    Valencia, P. M.; Farokhzad, O. C.; Karnik, R.; Langer, R. Nat. Nanotechnol. 2012, 7, 623–629.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2017

Open Access. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and source are credited, a link to the CC License is provided, and changes - if any - are indicated.

Authors and Affiliations

  • Victor Sebastian
    • 1
    • 2
  • Saif A. Khan
    • 3
  • Amol A. Kulkarni
    • 4
  1. 1.Department of Chemical Engineering and Environmental Technology, Institute of Nanoscience of Aragon (INA)University of ZaragozaSpain
  2. 2.Networking Research Center on BioengineeringBiomaterials and Nanomedicine, CIBER-BBNMadridSpain
  3. 3.Chemical and Biomolecular EngineeringNational University of SingaporeSingapore
  4. 4.Chemical Engineering and Process Development DivisionCSIR—National Chemical LaboratoryPuneIndia

Personalised recommendations