Journal of Flow Chemistry

, Volume 6, Issue 4, pp 323–328 | Cite as

Highlights from the Flow Chemistry Literature 2016 (Part 3)

  • Amol A. Kulkarni
Research Highlights


In this Section of the journal, the literature on continuous flow synthesis (primarily organic synthesis and functional materials) from the period of July–September 2016 is presented. All the publications are listed ordered by journal name, with 8 Review articles appearing at the end. In this quarter the number of papers on continuous flow organic synthesis is relatively more and with a few special issues planned in the coming months this number will increase significantly. There are many ‘firsts’ achieved in flow synthesis in the last quarter, but the most noticeable ones include the synthesis of Water-Stable Covalent Organic Frameworks and flow synthesis using in-situ generated chlorine!


  1. “Toward the Synthesis of Noroxymorphone via Aerobic Palladium-Catalyzed Continuous Flow N-Demethylation Strategies” Gutmann, B.; Elsner, P.; Cox, D. P.; Weigl, U.; Roberge, D. M.; Kappe, C. O. ACS Sustainable Chemistry & Engineering 2016, 4, 6048–6061CrossRefGoogle Scholar
  2. “Synthesizing Bromobutyl Rubber by a Microreactor System” Xie, P.; Wang, K.; Wang, P.; Xia, Y.; Luo, G. AIChE Journal 2016Google Scholar
  3. “Continuous-Flow Synthesis and Derivatization of Aziridines through Palladium-Catalyzed C(sp3)-H Activation” Zakrzewski, J.; Smalley, A. P.; Kabeshov, M. A.; Gaunt, M. J.; Lapkin, A. A. Angewandte Chemie International Edition 2016, 55, 8878–8883CrossRefGoogle Scholar
  4. “Continuous-Flow Synthesis of Biaryls by Negishi Cross-Coupling of Fluoro- and Trifluoromethyl-Substituted (Hetero)arenes” Roesner, S.; Buchwald, S. L. Angewandte Chemie International Edition 2016, 55, 10463–10467CrossRefGoogle Scholar
  5. “Rapid Synthesis of Aryl Fluorides in Continuous Flow through the Balz-Schiemann Reaction” Park, N. H.; Senter, T. J.; Buchwald, S. L. Angewandte Chemie International Edition 2016, 55, 11907–11911CrossRefGoogle Scholar
  6. “C3 Alkylation of Indoles Catalyzed by Carbocations under Continuous-Flow Conditions” Wan, L.; Zhu, W.; Qiao, K.; Sun, X.; Fang, Z.; Guo, K. Asian Journal of Organic Chemistry 2016, 5, 920–926CrossRefGoogle Scholar
  7. “Continuous Multistep Synthesis of Perillic Acid from Limonene by Catalytic Biofilms under Segmented Flow” Willrodt, C.; Halan, B.; Karthaus, L.; Rehdorf, J.; Julsing, M. K.; Buehler, K.; Schmid, A. Biotechnology and Bioengineering 2016, doi: 10.1002/bit.26071Google Scholar
  8. “Silicone Microreactors for the Photocatalytic Generation of Hydrogen” Castedo, A.; Mendoza, E.; Angurell, I.; Llorca, J. Catalysis Today 2016, 273, 106–111CrossRefGoogle Scholar
  9. “Scale up Study of Capillary Microreactors in Solvent-Free Semihydrogenation of 2-Methyl-3-Butyn-2-Ol” Cherkasov, N.; Al-Rawashdeh, M. M.; Ibhadon, A. O.; Rebrov, E. V. Catalysis Today 2016, 273, 205–212CrossRefGoogle Scholar
  10. “A Direct and Sustainable Synthesis of Tertiary Butyl Esters Enabled by Flow Microreactors” Degennaro, L.; Maggiulli, D.; Carlucci, C.; Fanelli, F.; Romanazzi, G.; Luisi, R. Chemical Communications 2016, 52, 9554–9557CrossRefGoogle Scholar
  11. “Bromination of Aromatic Compounds using Bromine in a Microreactor” Deng, Q.; Shen, R.; Ding, R.; Zhang, L. Chemical Engineering & Technology 2016, 39, 1445–1450CrossRefGoogle Scholar
  12. “Development of a Multi-Layer Microreactor: Application to the Selective Hydrogenation of 1-Butyne” Garcia Colli, G.; Alves, J. A.; Martinez, O. M.; Barreto, G. F. Chemical Engineering and Processing: Process Intensification 2016, 105, 38–45CrossRefGoogle Scholar
  13. “Measuring Enthalpy of Fast Exothermal Reaction with Infrared Thermography in a Microreactor” Zhang, J. S.; Zhang, C. Y.; Liu, G. T.; Luo, G. S. Chemical Engineering Journal 2016, 295, 384–390CrossRefGoogle Scholar
  14. “Parametric Studies of Electrolytic Decomposition of Hydroxylammonium Nitrate (HAN) Energetic Ionic Liquid in Microreactor Using Image Processing Technique” Chai, W. S.; Cheah, K. H.; Koh, K. S.; Chin, J.; Chik, T. F. W. K. Chemical Engineering Journal 2016, 296, 19–27CrossRefGoogle Scholar
  15. “Aldolase Catalyzed L-Phenylserine Synthesis in a Slug-Flow Microfluidic System - Performance and Diastereoselectivity Studies” Cech, J.; Hessel, V.; Pfibyl, M. Chemical Engineering Science 2016, doi: 10.1016/j.ces.2016.08.033Google Scholar
  16. “Model-Based Optimal Design of Continuous-Flow Reactors for the Synthesis of Active Pharmaceutical Ingredients” Emenike, V. N.; Krewer, U. Chemie Ingenieur Technik 2016, 88, 1215–1216CrossRefGoogle Scholar
  17. “Photocatalysis with Visible Light - Optimization and Scale-up for the Falling-Film Microreactor” Rehm, T. H.; Gros, S.; Renken, A.; Löb, P. Chemie Ingenieur Technik 2016, 88, 1334–1335CrossRefGoogle Scholar
  18. “Batch- and Continuous-Flow Aerobic Oxidation of 14-Hydroxy Opioids to 1,3-Oxazolidines—A Concise Synthesis of Noroxymorphone” Gutmann, B.; Weigl, U.; Cox, D. P.; Kappe, C. O. Chemistry - A European Journal 2016, 22, 10393–10398CrossRefGoogle Scholar
  19. “A Sustainable, Semi-Continuous Flow Synthesis of Hydantoins” Vukelic, S.; Koksch, B.; Seeberger, P. H.; Gilmore, K. Chemistry - A European Journal 2016, 22, 13451–13454CrossRefGoogle Scholar
  20. “Highly Efficient Hosomi-Sakurai Reaction of Aromatic Aldehydes Catalyzed by Montmorillonite Doped with Simple Bismuth(III) Salts. Batch and Continuous Flow Studies” Elizarov, N.; Pucheault, M.; Antoniotti, S. ChemistrySelect 2016, 1, 3219–3222CrossRefGoogle Scholar
  21. “Safe, Selective, and High-Yielding Synthesis of Acryloyl Chloride in a Continuous-Flow System” Movsisyan, M.; Heugebaert, T. S. A.; Dams, R.; Stevens, C. V. ChemSusChem 2016, 9, 1945–1952CrossRefGoogle Scholar
  22. “Continuous UV-Flow Microsystem for Efficient Radical Generation from Organotrifluoroborates by Photoredox Catalysis” El Achi, N.; Penhoat, M.; Bakkour, Y.; Rolando, C.; Chausset-Boissarie, L. European Journal of Organic Chemistry 2016, 4284–4288Google Scholar
  23. “Anionic Flow Polymerizations toward Functional Polyphosphoesters in Microreactors: Polymerization and UV-Modification” Baeten, E.; Vanslambrouck, S.; Jérôme, C.; Lecomte, P.; Junkers, T. European Polymer Journal 2016, 80, 208–218CrossRefGoogle Scholar
  24. “Flow Synthesis of Medium Molecular Weight Polyisobutylene Coinitiated by AlCl3” Zhu, S.; Lu, Y.; Wang, K.; Luo, G. European Polymer Journal 2016, 80, 219–226CrossRefGoogle Scholar
  25. “From Alcohol to 1,2,3-Triazole via A Multi-Step Continuous-Flow Synthesis of a Rufinamide Precursor” Borukhova, S.; Noel, T.; Metten, B.; de Vos, E.; Hessel, V. Green Chemistry 2016, 18, 4947–4953CrossRefGoogle Scholar
  26. “Optofluidics-Based Membrane Microreactor for Wastewater Treatment by Photocatalytic Ozonation” He, X.; Chen, R.; Zhu, X.; Liao, Q.; An, L.; Cheng, X.; Li, L. Industrial & Engineering Chemistry Research 2016, 55, 8627–8635CrossRefGoogle Scholar
  27. “On the Fly Multi-Modal Observation of Ligand Synthesis and Complexation of Cu Complexes in Flow with ’Benchtop’ NMR and Mass Spectrometry” Porwol, L.; Henson, A.; Kitson, P. J.; Long, D.-L.; Cronin, L. Inorganic Chemistry Frontiers 2016, 3, 919–923CrossRefGoogle Scholar
  28. “Effects of Heterogeneous-Homogeneous Interaction on the Homogeneous Ignition in Hydrogen-Fueled Catalytic Microreactors” Chen, J.; Liu, B.; Gao, X.; Yan, L.; Xu, D. International Journal of Hydrogen Energy 2016, 41, 11441–11454CrossRefGoogle Scholar
  29. “Hetero-/Homogeneous Combustion of Premixed Hydrogen-Oxygen Mixture in a Micro-Reactor with Catalyst Segmentation” Lu, Q.; Pan, J.; Hu, S.; Tang, A.; Shao, X. International Journal of Hydrogen Energy 2016, 41, 12387–12396CrossRefGoogle Scholar
  30. “Direct Aldol and Nitroaldol Condensation in an Aminosilane-Grafted Si/Zr/Ti Composite Hollow Fiber as a Heterogeneous Catalyst and Continuous-Flow Reactor” He, Y.; Jawad, A.; Li, X.; Atanga, M.; Rezaei, F.; Rownaghi, A. A. Journal of Catalysis 2016, 341, 149–159CrossRefGoogle Scholar
  31. “Sunlight Assisted Synthesis of a-Aminonitrile Using Capillary Flow Microreactor: A New Approach” Abdulkareem Yunus, I.; Basheer, C.; Al-Muallem, H. A. Journal of Environmental Chemical Engineering 2016, 4, 2802–2806CrossRefGoogle Scholar
  32. “A Two-Step Continuous-Flow Procedure towards Ribociclib” Pellegatti, L.; Hafner, A.; Sedelmeier, J. Journal of Flow Chemistry 2016, 6, 198–201CrossRefGoogle Scholar
  33. “Safe Use of Nitromethane for Aldol Reactions in Flow” Hutchings, M.; Wirth, T. Journal of Flow Chemistry 2016, 6, 202–205CrossRefGoogle Scholar
  34. “Metal-Free, Visible Light-Promoted Aerobic Aldehydes Oxidation” Hamami, Z. E.; Vanoye, L.; Fongarland, P.; de Bellefon, C.; Favre-Reguillon, A. Journal of Flow Chemistry 2016, 6, 206–210CrossRefGoogle Scholar
  35. “One-Pot Synthesis of a-Haloketones Employing a Membrane-Based Semibatch Diazomethane Generator” Garbarino, S.; Guerra, J.; Poechlauer, P.; Gutmann, B.; Kappe, C. O. Journal of Flow Chemistry 2016, 6, 211–217CrossRefGoogle Scholar
  36. “Protected Diazonium Salts: A Continuous-Flow Preparation of Triazenes Including the Anticancer Compounds Dacarbazine and Mitozolomide” Schotten, C.; Aldmairi, A. H.; Sagatov, Y.; Shepherd, M.; Browne, D. L. Journal of Flow Chemistry 2016, 6, 218–225CrossRefGoogle Scholar
  37. “Delivering Enhanced Efficiency in the Synthesis of a-Diazosulfoxides by Exploiting the Process Control Enabled in Flow” McCaw, P. G.; Deadman, B. J.; Maguire, A. R.; Collins, S. G. Journal of Flow Chemistry 2016, 6, 226–233CrossRefGoogle Scholar
  38. “From Anilines to Aziridines: A Two-Step Synthesis under Continuous-Flow Conditions” Rossi, S.; Puglisi, A.; Intrieri, D.; Gallo, E. Journal of Flow Chemistry 2016, 6, 234–239CrossRefGoogle Scholar
  39. “Fischer Indole Reaction in Batch and Flow Employing a Sulfonic Acid Resin: Synthesis of Pyrido[2,3-a]Carbazoles” Bosch, C.; López-Lledó, P.; Bonjoch, J.; Bradshaw, B.; Nieuwland, P. J.; Blanco-Ania, D.; Rutjes, F. P. J. T. Journal of Flow Chemistry 2016, 6, 240–243CrossRefGoogle Scholar
  40. “Continuous Suzuki—Miyaura Reactions with Novel Ce—Sn—Pd Oxides and Integrated Crystallization as Continuous Downstream Protocol” Lichtenegger, G. J.; Maier, M.; Khinast, J. G.; Gruber-Wölfler, H. Journal of Flow Chemistry 2016, 6, 244–251CrossRefGoogle Scholar
  41. “Photo-Claisen Rearrangement of Allyl Phenyl Ether in Microflow: Influence of Phenyl Core Substituents and Vision on Orthogonality” Shahbazali, E.; Noël, T.; Hessel, V. Journal of Flow Chemistry 2016, 6, 252–259CrossRefGoogle Scholar
  42. “Photo-Induced Copper-Mediated Acrylate Polymerization in Continuous-Flow Reactors” Railian, S.; Wenn, B.; Junkers, T. Journal of Flow Chemistry 2016, 6, 260–267CrossRefGoogle Scholar
  43. “Microreactor Mixing-Unit Design for Fast Liquid—Liquid Reactions” Mielke, E.; Roberge, D. M.; Macchi, A. Journal of Flow Chemistry 2016, 6, 279–287CrossRefGoogle Scholar
  44. “Development of a Hollow Fiber Membrane Micro-Reactor for Biocatalytic Production of Formate from CO2” Wang, Y.-Z.; Zhao, Z.-P.; Li, M.-F.; Chen, Y.-Z.; Liu, W.-F. Journal of Membrane Science 2016, 514, 44–52CrossRefGoogle Scholar
  45. “Catalytic Macrocyclization Strategies Using Continuous Flow: Formal Total Synthesis of Ivorenolide A” de Léséleuc, M.; Godin, É.; Parisien-Collette, S.; Lévesque, A.; Collins, S. K. Journal of Organic Chemistry 2016, 81, 6750–6756CrossRefGoogle Scholar
  46. “Synthesis of a-Nitro Carbonyls via Nitrations in Flow” Chentsova, A.; Ushakov, D. B.; Seeberger, P. H.; Gilmore, K. Journal of Organic Chemistry 2016, 81, 9415–9421CrossRefGoogle Scholar
  47. “Compartmented Microreactors for the Oligosaccharide-Synthesis by Means of Magnetic Enzyme Immobilisates” Heinzler, R.; Hübner, J.; Franzreb, M. New Biotechnology 2016, 33, S112CrossRefGoogle Scholar
  48. “Automated Library Synthesis of Cyclopropyl Boronic Esters Employing Diazomethane in a Tube-in-Tube Flow Reactor” Koolman, H. F.; Kantor, S.; Bogdan, A. R.; Wang, Y.; Pan, J. Y.; Djuric, S. W. Organic & Biomolecular Chemistry 2016, 14, 6591–6595CrossRefGoogle Scholar
  49. “Flow Chemistry on Multigram Scale: Continuous Synthesis of Boronic Acids within 1 s” Hafner, A.; Meisenbach, M.; Sedelmeier, J. Organic Letters 2016, 18, 3630–3633CrossRefGoogle Scholar
  50. “Remarkable Improvement of Organic Photoreaction Efficiency in the Flow Microreactor by the Slug Flow Condition Using Water” Nakano, M.; Nishiyama, Y.; Tanimoto, H.; Morimoto, T.; Kakiuchi, K. Organic Process Research & Development 2016, 20, 1626–1632CrossRefGoogle Scholar
  51. “A Small-Footprint, High-Capacity Flow Reactor for UV Photochemical Synthesis on the Kilogram Scale” Elliott, L. D.; Berry, M.; Haiji, B.; Klauber, D.; Leonard, J.; Booker-Milburn, K. I. Organic Process Research & Development 2016, 20, 1806–1811CrossRefGoogle Scholar
  52. “Ultra-Fast Continuous-Flow Photo Degradation of Organic Peroxide Explosives for Their Efficient Conversion into Hydrogen Peroxide and Possible Application” Mahbub, P.; Wilson, R.; Nesterenko, P. N. Propellants, Explosives, Pyrotechnics 2016, 41, 757–763CrossRefGoogle Scholar
  53. “Self-Optimisation of the Final Stage in the Synthesis of EGFR Kinase Inhibitor AZD9291 Using an Automated Flow Reactor” Holmes, N.; Akien, G. R.; Blacker, A. J.; Woodward, R. L.; Meadows, R. E.; Bourne, R. A. Reaction Chemistry & Engineering 2016, 1, 366–371CrossRefGoogle Scholar
  54. “Continuous Flow Synthesis of the Iodination Agent 1,3-Diiodo-5,5-Dimethyl-Imidazolidine-2,4-Dione Telescoped with Semi-Continuous Product Isolation” Ferreri, M.; Drageset, A.; Gambarotti, C.; Bjorsvik, H.-R. Reaction Chemistry & Engineering 2016, 1, 379–386CrossRefGoogle Scholar
  55. “Continuous Flow Synthesis Concatenated with Continuous Flow Liquid-Liquid Extraction for Work-up and Purification: Selective Mono- and Di-Iodination of the Imidazole Backbone” Drageset, A.; Bjorsvik, H.-R. Reaction Chemistry & Engineering 2016, 1, 436–444CrossRefGoogle Scholar
  56. “A Laboratory-Scale Continuous Flow Chlorine Generator for Organic Synthesis” Strauss, F. J.; Cantillo, D.; Guerra, J.; Kappe, C. O. Reaction Chemistry & Engineering 2016, 1, 472–476CrossRefGoogle Scholar
  57. “An Approach to the Synthesis of 4-Aryl and 5-Aryl Substituted Thiazole-2(3H)-Thiones Employing Flow Processing” Balti, M.; Miller, S. A.; Efrit, M. L.; Leadbeater, N. E. RSC Advances 2016, 6, 72165–72169CrossRefGoogle Scholar
  58. “Synthesis of Unsaturated Secondary Amines by Direct Reductive Amination of Aliphatic Aldehydes with Nitroarenes over Au/Al2O3 Catalyst in Continuous Flow Mode” Nuzhdin, A. L.; Artiukha, E. A.; Bukhtiyarova, G. A.; Zaytsev, S. Y.; Plyusnin, P. E.; Shubin, Y. V.; Bukhtiyarov, V. I. RSC Advances 2016, 6, 88366–88372CrossRefGoogle Scholar
  59. “A Two-Step Continuous Flow Synthesis of 1,4-Disubstituted 1,2,3-Triazoles under Metal- and Azide-Free Conditions” Gu, J.; Fang, Z.; Yang, Z.; Li, X.; Zhu, N.; Wan, L.; Wei, P.; Guo, K. RSC Advances 2016, 6, 89073–89079CrossRefGoogle Scholar
  60. “Temperature Distribution Monitoring of a Coiled Flow Channel in Microwave Heating Using an Optical Fiber Sensing Technique” Wada, D.; Sugiyama, J.-i.; Zushi, H.; Murayama, H. Sensors and Actuators B: Chemical 2016, 232, 434–441CrossRefGoogle Scholar
  61. “Biodiesel Synthesis Using Integrated Acid and Base Catalysis in Continuous Flow” Asadi, M.; Hooper, J. F.; Lupton, D. W. Tetrahedron 2016, 72, 3729–3733CrossRefGoogle Scholar


  1. “High-Throughput Synthesis of Lignin Particles (~30 nm to ~2 p.m) via Aerosol Flow Reactor: Size Fractionation and Utilization in Pickering Emulsions” Ago, M.; Huan, S.; Borghei, M.; Raula, J.; Kauppinen, E. I.; Rojas, O. J. ACS Applied Materials & Interfaces 2016, 8, 23302–23310CrossRefGoogle Scholar
  2. “Controllable Synthesis of Gold Nanoparticles in Aqueous Solution by Microwave Assisted Flow Chemistry” Bayazit, M. K.; Yue, J.; Cao, E.; Gavriilidis, A.; Tang, J. ACS Sustainable Chemistry & Engineering 2016, 4, 6435–6442CrossRefGoogle Scholar
  3. “Flow Microreactor Synthesis of Gold Nanoshells and Patchy Particles” Watanabe, S.; Asahi, Y.; Omura, H.; Mae, K.; Miyahara, M. T. Advanced Powder Technology 2016, doi: 10.1016/j.apt.2016.08.013Google Scholar
  4. “Room Temperature Batch and Continuous Flow Synthesis of Water-Stable Covalent Organic Frameworks (COFs)” Peng, Y.; Wong, W. K.; Hu, Z.; Cheng, Y.; Yuan, D.; Khan, S. A.; Zhao, D. Chemistry of Materials 2016, 28, 5095–5101CrossRefGoogle Scholar
  5. “Synthesis of Ultra-Small Platinum Nanoparticles in a Continuous Flow Microreactor” Suryawanshi, P. L.; Gumfekar, S. P.; Kumar, P. R.; Kale, B. B.; Sonawane, S. H. Colloid and Interface Science Communications 2016, 13, 6–9CrossRefGoogle Scholar
  6. “Microfluidic Assisted Synthesis of Silver Nanoparticle-Chitosan Composite Microparticles for Antibacterial Applications” Yang, C.-H.; Wang, L.-S.; Chen, S.-Y.; Huang, M.-C.; Li, Y.-H.; Lin, Y.-C.; Chen, P.-F.; Shaw, J.-F.; Huang, K.-S. International Journal of Pharmaceutics 2016, 510, 493–500CrossRefGoogle Scholar
  7. “Synthesis of Silver Nanoparticles Using a Microfluidic Impinging Jet Reactor” Baber, R.; Mazzei, L.; Thanh, N. T. K.; Gavriilidis, A. Journal of Flow Chemistry 2016, 6, 268–278CrossRefGoogle Scholar
  8. “Co-Flow Microfluidic Synthesis of Liquid Crystalline Actuating Janus Particles” Hessberger, T.; Braun, L. B.; Henrich, F.; Muller, C.; Serra, C.; Zentel, R. Journal of Materials Chemistry C 2016, 4, 8778–8786CrossRefGoogle Scholar
  9. “Ionic Self-Assembly of a Giant Vesicle as a Smart Microcarrier and Microreactor” Shen, J.; Xin, X.; Liu, T.; Wang, S.; Yang, Y.; Luan, X.; Xu, G.; Yuan, S. Langmuir 2016, 6, 9548–9556CrossRefGoogle Scholar
  10. “Monolithic Hierarchical Gold Sponges for Efficient and Stable Catalysis in a Continuous-Flow Microreactor” Yu, Y.; Xiao, W.; Zhou, T.; Zhang, P.; Yan, C.; Zheng, Z. Materials Chemistry Frontiers 2016, doi: 10.1039/C6QM00115GGoogle Scholar
  11. “Titania-Silica Monolithic Multichannel Microreactors. Proof of Concept and Fabrication/Structure/Catalytic Properties in the Oxidation of 2,3,6-Trimethylphenol” Koreniuk, A.; Maresz, K.; Odrozek, K.; Mrowiec-Bialon, J. Microporous and Mesoporous Materials 2016, 229, 98–105CrossRefGoogle Scholar


  1. “Chemical Reaction Engineering, Process Design and Scale-up Issues at the Frontier of Synthesis: Flow Chemistry” Rossetti, I.; Compagnoni, M. Chemical Engineering Journal 2016, 296, 56–70CrossRefGoogle Scholar
  2. “Advanced Polymer Flow Synthesis” Junkers, T.; Hoogenboom, R. European Polymer Journal 2016, 80, 175–176CrossRefGoogle Scholar
  3. “Flow Technology for Organometallic-Mediated Synthesis” Degennaro, L.; Carlucci, C.; De Angelis, S.; Luisi, R. Journal of Flow Chemistry 2016, 6, 136–166CrossRefGoogle Scholar
  4. “Concepts and Optimization Strategies of Experimental Design in Continuous-Flow Processing” Gioiello, A.; Mancino, V.; Filipponi, P.; Mostarda, S.; Cerra, B. Journal of Flow Chemistry 2016, 6, 167–180CrossRefGoogle Scholar
  5. “Separation Units and Equipment for Lab-Scale Process Development” Hohmann, L.; Kurt, S. K.; Soboll, S.; Kockmann, N. Journal of Flow Chemistry 2016, 6, 181–190CrossRefGoogle Scholar
  6. “Electrosynthesis in Extended Channel Length Microfluidic Electrolysis Cells” Green, R. A.; Brown, R. C. D.; Pletcher, D. Journal of Flow Chemistry 2016, 6, 191–197CrossRefGoogle Scholar
  7. “Towards Scalable and Controlled Synthesis of Metal-Organic Framework Materials Using Continuous Flow Reactors” Dunne, P. W.; Lester, E.; Walton, R. I. Reaction Chemistry & Engineering 2016, 1, 352–360CrossRefGoogle Scholar
  8. “Reaction Screening in Continuous Flow Reactors” Mohamed, D. K. B.; Yu, X.; Li, J.; Wu, J. Tetrahedron Letters 2016, 57, 3965–3977CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2016

Authors and Affiliations

  • Amol A. Kulkarni
    • 1
  1. 1.Chem Eng. & Proc. Dev. DivisionCSIR-National Chemical LaboratoryPune-India

Personalised recommendations