Journal of Flow Chemistry

, Volume 7, Issue 1, pp 9–12 | Cite as

Enhanced [4+2] Cycloadditions by Solvophobic Effects and Gravity-Induced Mixing in Core—Shell Droplets

Full Paper


A new way to perform reactions in core—shell double emulsions is reported herein. The phase boundaries of the threephase droplet flow were used to pressurize the reactants in the shell liquid, enhancing the reaction rate of a cycloaddition greatly in comparison to known methods. As key parameters, solvophobic effects and precise control over the droplet sizes were used to exploit a reaction with a negative volume of activation. The internal pressure of the reaction solution was regulated purely by the thickness of the shell liquid without adding additional reagents. Additionally, the reaction performed better when the core droplet was used to stir the shell droplet, considerably improving the mass transfer inside the otherwise diffusion-limited process.


microreactors double emulsions hydrophobic effect active mixing cycloaddition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

41981_2017_7010009_MOESM1_ESM.pdf (2.4 mb)
Supplementary material, approximately 2495 KB.


  1. 1.
    Brzozowski, M.; O’Brien, M.; Ley, S. L.; Polyzos, A. Acc. Chem. Res. 2015, 48, 349–362.CrossRefGoogle Scholar
  2. 2.
    Wakami, H.; Yoshida, J. Org. Process Res. Dev. 2005, 9, 787–791.CrossRefGoogle Scholar
  3. 3.
    Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013, 42, 8849–8869.CrossRefGoogle Scholar
  4. 4.
    Longstreet, A.; Opalka, S.; Campbell, B.; Gupton, B.; McQuade, D. Beilstein J. Org. Chem. 2013, 9, 2570–2578.CrossRefGoogle Scholar
  5. 5.
    Schwalbe, T.; Autze, V.; Wille, G. Chimia 2002, 56, 636–646.CrossRefGoogle Scholar
  6. 6.
    Jähnisch, K.; Hessel, V.; Lowe, H.; Baerns, M. Angew. Chem., Int. Ed. 2004, 43, 406–446.CrossRefGoogle Scholar
  7. 7.
    Watts, P.; Haswell, S. Curr. Opin. Chem. Biol. 2003, 7, 380–387.CrossRefGoogle Scholar
  8. 8.
    Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, T. D. Chem. Rev. 2007, 107, 2300–2318.CrossRefGoogle Scholar
  9. 9.
    Gutmann, B.; Canillo, D.; Kappe, C. O. Angew. Chem., Int. Ed. 2015, 54, 6688–6728.CrossRefGoogle Scholar
  10. 10.
    Wakami, H.; Yoshida, J. Org. Process Res. Dev. 2005, 9, 787–791.CrossRefGoogle Scholar
  11. 11.
    Nagaki, A.; Kim, H.; Moriwaki, Y.; Matsuo, C.; Yoshida, J. Chem. Eur. J. 2010, 16, 11167–11177.CrossRefGoogle Scholar
  12. 12.
    Nagaki, A.; Imai, K.; Ishiuchi, S.; Yoshida, J. Angew. Chem., Int. Ed. 2015, 54, 1914–1918.CrossRefGoogle Scholar
  13. 13.
    Nalivela, K.; Tilley, M.; McGuire, M.; Organ, M. Chem. Eur J. 2014, 20, 6603–6607.CrossRefGoogle Scholar
  14. 14.
    Amii, H.; Nagaki, A.; Yoshida, J. Beilstein J. Org. Chem. 2013, 9, 2793–2802.CrossRefGoogle Scholar
  15. 15.
    Zhao, C.-X.; Middelberg, A. P. J. Chem. Eng. Sci. 2011, 66, 1394–1411.CrossRefGoogle Scholar
  16. 16.
    Moghaddam, M. M.; Baghbanzadeh, M.; Sadeghpour, A.; Glatter, O.; Kappe, O. Chem. Eur J. 2013, 19, 11629–11636.CrossRefGoogle Scholar
  17. 17.
    Misuk, V.; Schmidt, M.; Braukmann, S.; Giannopoulos, K.; Karl, D.; Loewe, H. Chem. Eng. Technol. 2015, 38, 1150–1153.CrossRefGoogle Scholar
  18. 18.
    Song, H.; Tice, J.; Ismagilov, R. Angew. Chem., Int. Ed. 2003, 42, 768–772.CrossRefGoogle Scholar
  19. 19.
    Song, H.; Chen, D. L.; Ismagilov, R. F. Angew. Chem., Int. Ed. 2006, 45, 7336–7356.CrossRefGoogle Scholar
  20. 20.
    Baroud, C.; Gallaire, F.; Dangla, R. Lab Chip 2010, 10, 2032–2045.CrossRefGoogle Scholar
  21. 21.
    Kim, J.; Lee, D.; Shum, H.; Weitz, D. Adv. Mater. 2008, 20, 3239–3243.CrossRefGoogle Scholar
  22. 22.
    Wang, W.; Xie, R.; Ju, X.-J.; Luo, T.; Liu, L.; Weitz, D.; Chu, L.-Y. Lab Chip 2011, 11, 1587–1592.CrossRefGoogle Scholar
  23. 23.
    Shah, R.; Shum, H.; Rowat, A.; Lee, D.; Agresti, J.; Utada, A.; Chu, L.-Y.; Kim, J.-W.; Fernandez-Nieves, A.; Martinez, C. Mater. Today 2008, 11, 18–27.CrossRefGoogle Scholar
  24. 24.
    Misuk, V.; Mai, A.; Zhao, Y.; Lowe, H. J. Flow Chem. 2015, 5, 2, 101–109.CrossRefGoogle Scholar
  25. 25.
    Misuk, V.; Mai, A.; Giannopoulos, K.; Karl, D.; Heinrich, J.; Rauber, D.; Lowe, H. J. Flow Chem. 2014, 5, 1, 43–47.CrossRefGoogle Scholar
  26. 26.
    Guzowski, J.; Korczyk, P.; Jakiela, S.; Garstecki, P. Soft Matter 2012, 8, 7269–7278.CrossRefGoogle Scholar
  27. 27.
    Abolhasani, M.; Bruno, N. C.; Jensen, K. F. Chem. Comm. 2015, 51, 8916–8919.CrossRefGoogle Scholar
  28. 28.
    Grieco, P. A.; Nunes, J. J.; Gaul, M. D. J. Am. Chem. Soc. 1990, 112, 4595–4596.CrossRefGoogle Scholar
  29. 29.(a)
    Rideout, D. C.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 7816–7817CrossRefGoogle Scholar
  30. 29.(b)
    Myers, K.; Kumar K. J. Am. Chem. Soc. 2000, 122, 12025–12026.CrossRefGoogle Scholar
  31. 30.
    Pawar, S.; Phalgune, U.; Kumar, A. J. Org. Chem. 1999, 64, 7055–7060.CrossRefGoogle Scholar
  32. 31.
    Kumar, A.; Deshpande, S. J. Phys. Org. Chem. 2002, 15, 242–245.CrossRefGoogle Scholar
  33. 32.
    Breslow, R.; Maitra, U.; Rideout, D. Tetrahedron Lett. 1983, 24, 1901–1904.CrossRefGoogle Scholar
  34. 33.
    van Eldik, R.; Asano, T.; Le Noble, W. J. Chem. Rev. 1989, 89, 549–688.CrossRefGoogle Scholar
  35. 34.
    Sauer, J. Angew. Chem. 1967, 79, 76–94.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2016

Authors and Affiliations

  1. 1.Center of Applied Fluidics and Engineering (CAFE)Fraunhofer ICT-IMMMainzGermany
  2. 2.Johannes Gutenberg University MainzMainzGermany

Personalised recommendations