Abstract
Magnetic nanomaterials have many applications in the fields of catalysis, medicine, and environmental studies. An emerging synthetic method capable of large-scale production of nanomaterials is a continuous-flow microreactor. However, translating known conventional benchtop reactions to a continuous-flow system can be difficult; reaction parameters such as reaction time and viscosity of the solution are significant limitations in flow-based systems. In this study, nanocrystalline Cu-Ni and Cu-Co core-shell materials were successfully synthesized using a capillary microreactor in a one-step process. Ethanol was used as solvent, allowing for faster reaction times and reduced reaction solution viscosity, compared to similar bench top synthetic protocols. Both nanocomposites were tested for activity in Fischer-Tropsch and showed activity above 220 °C. This study shows that a continuous-flow capillary microreactor has the capabilities to make complex metallic nanomaterials at short reaction times with proper selection of reaction solvent systems.

This is a preview of subscription content, access via your institution.
References
Kodama, R. H. J. Magn. Magn. Mater. 1999, 200, 359–372.
Huang, G.; Hu, J.; Zhang, H.; Zhou, Z.; Chi, X.; Gao, J. Nanoscale 2014, 6, 726–730.
Smetana, A. B.; Wang, J. S.; Boeckl, J. J.; Brown, G. J.; Wai, C. M. J. Phys. Chem. C 2008, 112, 2294–2297.
Slostowski, C.; Marre, S.; Babot, O.; Toupance, T.; Aymonier, C. Langmuir 2012, 28, 16656–16663.
Choi, H.; Veriansyah, B.; Kim, J.; Kim, J. D.; Kang, J. W. J. Supercrit. Fluids 2010, 52, 285–291.
Pascu, O.; Marre, S.; Aymonier, C.; Roig, A. Nanoscale 2013, 5, 2126–2132.
Clifford, D. M.; El-Gendy, A. A.; Lu, A. J.; Pestov, D.; Carpenter, E. E. J. Flow Chem. 2014, 4, 148–152.
Xu, L.; Srinivasakannan, C.; Peng, J.; Zhang, D.; Chen, G. Chemical Engineering and Processing: Process Intensification 2015, 93, 44–49.
Søndergaard, M.; Bøjesen, E. D.; Christensen, M.; Iversen, B. B. Cryst. Growth Des. 2011, 11, 4027–4033.
Testino, A.; Pilger, F.; Lucchini, M.; Quinsaat, J.; Stähli, C.; Bowen, P. Molecules 2015, 20, 10566.
Gao, W.; Zhao, Y.; Chen, H.; Chen, H.; Li, Y.; He, S.; Zhang, Y.; Wei, M.; Evans, D. G.; Duan, X. Green Chem. 2015, 17, 1525–1534.
Xiao, K.; Bao, Z.; Qi, X.; Wang, X.; Zhong, L.; Fang, K.; Lin, M.; Sun, Y. J. Mol. Catal. A: Chem. 2013, 378, 319–325.
Xi, P.; Cao, Y.; Yang, F.; Ma, C.; Chen, F.; Yu, S.; Wang, S.; Zeng, Z.; Zhang, X. Nanoscale 2013, 5, 6124–6130.
Singh, A. K.; Xu, Q. ChemCatChem 2013, 5, 652–676.
Spivey, J. J.; Egbebi, A. Chem. Soc. Rev. 2007, 36, 1514–1528.
Nafria, R.; Genç, A.; Ibáñez, M.; Arbiol, J.; Ramírez de la Piscina, P.; Homs, N.; Cabot, A. Langmuir 2016, 32, 2267–2276.
Bonet, F.; Grugeon, S.; Dupont, L.; Urbina, R. H.; Guéry, C.; Tarascon, J. M. J. Solid State Chem. 2003, 172, 111–115.
Carroll, K. J.; Calvin, S.; Ekiert, T. F.; Unruh, K. M.; Carpenter, E. E. Chem. Mater. 2010, 22, 2175–2177.
Huba, Z. J.; Carpenter, E. E. CrystEngComm 2013, 15, 8919–8923.
Pearson, W. B. Handbook of Lattice Spacings and Stuctures of Metals; Pergamon Press Ltd.: Oxford, 1967.
Cha, S. I.; Mo, C. B.; Kim, K. T.; Hong, S. H. J. Mater. Res. 2005, 20, 2148–2153.
Ung, D.; Soumare, Y.; Chakroune, N.; Viau, G.; Vaulay, M. J.; Richard, V.; Fiévet, F. Chem. Mater. 2007, 19, 2084–2094.
DiPietro, R. S.; Johnson, H. G.; Bennett, S. P.; Nummy, T. J.; Lewis, L. H.; Heiman, D. Appl. Phys. Lett. 2010, 96, 222506.
Sakharov, A. M.; Mazaletskaya, L. I.; Skibida, I. P. Kinet. Catal. 2001, 42, 662–668.
Li, T.; Wang, H.; Yang, Y.; Xiang, H.; Li, Y. Fuel Process. Technol. 2014, 118, 117–124.
Mohandas, J. C.; Gnanamani, M. K.; Jacobs, G.; Ma, W.; Ji, Y.; Khalid, S.; Davis, B. H. ACS Catal. 2011, 1, 1581–1588.
Dry, M. E. Appl. Catal., A 1996, 138, 319–344.
Schulz, H. Appl. Catal., A 1999, 186, 3–12.
Schoenitz, M.; Grundemann, L.; Augustin, W.; Scholl, S. Chem. Commun. (Cambridge, U. K.) 2015, 51, 8213–8228.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Smith, S.E., Huba, Z.J., Almalki, F. et al. Continuous-Flow Synthesis of Cu-M (M=Ni, Co) Core-Shell Nanocomposites. J Flow Chem 7, 18–22 (2017). https://doi.org/10.1556/1846.2016.00037
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1556/1846.2016.00037
Keywords
- continuous-flow synthesis
- large scale production
- core-shell nanocomposite
- Fischer-Tropsch catalyst