Skip to main content

Continuous-Flow Synthesis of Cu-M (M=Ni, Co) Core-Shell Nanocomposites

Abstract

Magnetic nanomaterials have many applications in the fields of catalysis, medicine, and environmental studies. An emerging synthetic method capable of large-scale production of nanomaterials is a continuous-flow microreactor. However, translating known conventional benchtop reactions to a continuous-flow system can be difficult; reaction parameters such as reaction time and viscosity of the solution are significant limitations in flow-based systems. In this study, nanocrystalline Cu-Ni and Cu-Co core-shell materials were successfully synthesized using a capillary microreactor in a one-step process. Ethanol was used as solvent, allowing for faster reaction times and reduced reaction solution viscosity, compared to similar bench top synthetic protocols. Both nanocomposites were tested for activity in Fischer-Tropsch and showed activity above 220 °C. This study shows that a continuous-flow capillary microreactor has the capabilities to make complex metallic nanomaterials at short reaction times with proper selection of reaction solvent systems.

This is a preview of subscription content, access via your institution.

References

  1. Kodama, R. H. J. Magn. Magn. Mater. 1999, 200, 359–372.

    Article  CAS  Google Scholar 

  2. Huang, G.; Hu, J.; Zhang, H.; Zhou, Z.; Chi, X.; Gao, J. Nanoscale 2014, 6, 726–730.

    Article  CAS  Google Scholar 

  3. Smetana, A. B.; Wang, J. S.; Boeckl, J. J.; Brown, G. J.; Wai, C. M. J. Phys. Chem. C 2008, 112, 2294–2297.

    Article  CAS  Google Scholar 

  4. Slostowski, C.; Marre, S.; Babot, O.; Toupance, T.; Aymonier, C. Langmuir 2012, 28, 16656–16663.

    Article  CAS  Google Scholar 

  5. Choi, H.; Veriansyah, B.; Kim, J.; Kim, J. D.; Kang, J. W. J. Supercrit. Fluids 2010, 52, 285–291.

    Article  CAS  Google Scholar 

  6. Pascu, O.; Marre, S.; Aymonier, C.; Roig, A. Nanoscale 2013, 5, 2126–2132.

    Article  CAS  Google Scholar 

  7. Clifford, D. M.; El-Gendy, A. A.; Lu, A. J.; Pestov, D.; Carpenter, E. E. J. Flow Chem. 2014, 4, 148–152.

    Article  CAS  Google Scholar 

  8. Xu, L.; Srinivasakannan, C.; Peng, J.; Zhang, D.; Chen, G. Chemical Engineering and Processing: Process Intensification 2015, 93, 44–49.

    Article  CAS  Google Scholar 

  9. Søndergaard, M.; Bøjesen, E. D.; Christensen, M.; Iversen, B. B. Cryst. Growth Des. 2011, 11, 4027–4033.

    Article  Google Scholar 

  10. Testino, A.; Pilger, F.; Lucchini, M.; Quinsaat, J.; Stähli, C.; Bowen, P. Molecules 2015, 20, 10566.

    Article  CAS  Google Scholar 

  11. Gao, W.; Zhao, Y.; Chen, H.; Chen, H.; Li, Y.; He, S.; Zhang, Y.; Wei, M.; Evans, D. G.; Duan, X. Green Chem. 2015, 17, 1525–1534.

    Article  CAS  Google Scholar 

  12. Xiao, K.; Bao, Z.; Qi, X.; Wang, X.; Zhong, L.; Fang, K.; Lin, M.; Sun, Y. J. Mol. Catal. A: Chem. 2013, 378, 319–325.

    Article  CAS  Google Scholar 

  13. Xi, P.; Cao, Y.; Yang, F.; Ma, C.; Chen, F.; Yu, S.; Wang, S.; Zeng, Z.; Zhang, X. Nanoscale 2013, 5, 6124–6130.

    Article  CAS  Google Scholar 

  14. Singh, A. K.; Xu, Q. ChemCatChem 2013, 5, 652–676.

    Article  CAS  Google Scholar 

  15. Spivey, J. J.; Egbebi, A. Chem. Soc. Rev. 2007, 36, 1514–1528.

    Article  CAS  Google Scholar 

  16. Nafria, R.; Genç, A.; Ibáñez, M.; Arbiol, J.; Ramírez de la Piscina, P.; Homs, N.; Cabot, A. Langmuir 2016, 32, 2267–2276.

    Article  CAS  Google Scholar 

  17. Bonet, F.; Grugeon, S.; Dupont, L.; Urbina, R. H.; Guéry, C.; Tarascon, J. M. J. Solid State Chem. 2003, 172, 111–115.

    Article  CAS  Google Scholar 

  18. Carroll, K. J.; Calvin, S.; Ekiert, T. F.; Unruh, K. M.; Carpenter, E. E. Chem. Mater. 2010, 22, 2175–2177.

    Article  CAS  Google Scholar 

  19. Huba, Z. J.; Carpenter, E. E. CrystEngComm 2013, 15, 8919–8923.

    Article  CAS  Google Scholar 

  20. Pearson, W. B. Handbook of Lattice Spacings and Stuctures of Metals; Pergamon Press Ltd.: Oxford, 1967.

    Google Scholar 

  21. Cha, S. I.; Mo, C. B.; Kim, K. T.; Hong, S. H. J. Mater. Res. 2005, 20, 2148–2153.

    Article  CAS  Google Scholar 

  22. Ung, D.; Soumare, Y.; Chakroune, N.; Viau, G.; Vaulay, M. J.; Richard, V.; Fiévet, F. Chem. Mater. 2007, 19, 2084–2094.

    Article  CAS  Google Scholar 

  23. DiPietro, R. S.; Johnson, H. G.; Bennett, S. P.; Nummy, T. J.; Lewis, L. H.; Heiman, D. Appl. Phys. Lett. 2010, 96, 222506.

    Article  Google Scholar 

  24. Sakharov, A. M.; Mazaletskaya, L. I.; Skibida, I. P. Kinet. Catal. 2001, 42, 662–668.

    Article  CAS  Google Scholar 

  25. Li, T.; Wang, H.; Yang, Y.; Xiang, H.; Li, Y. Fuel Process. Technol. 2014, 118, 117–124.

    Article  CAS  Google Scholar 

  26. Mohandas, J. C.; Gnanamani, M. K.; Jacobs, G.; Ma, W.; Ji, Y.; Khalid, S.; Davis, B. H. ACS Catal. 2011, 1, 1581–1588.

    Article  CAS  Google Scholar 

  27. Dry, M. E. Appl. Catal., A 1996, 138, 319–344.

    Article  CAS  Google Scholar 

  28. Schulz, H. Appl. Catal., A 1999, 186, 3–12.

    Article  CAS  Google Scholar 

  29. Schoenitz, M.; Grundemann, L.; Augustin, W.; Scholl, S. Chem. Commun. (Cambridge, U. K.) 2015, 51, 8213–8228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everett E. Carpenter.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smith, S.E., Huba, Z.J., Almalki, F. et al. Continuous-Flow Synthesis of Cu-M (M=Ni, Co) Core-Shell Nanocomposites. J Flow Chem 7, 18–22 (2017). https://doi.org/10.1556/1846.2016.00037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/1846.2016.00037

Keywords

  • continuous-flow synthesis
  • large scale production
  • core-shell nanocomposite
  • Fischer-Tropsch catalyst