Journal of Flow Chemistry

, Volume 7, Issue 1, pp 18–22 | Cite as

Continuous-Flow Synthesis of Cu-M (M=Ni, Co) Core-Shell Nanocomposites

  • Sarah E. Smith
  • Zachary J. Huba
  • Fahad Almalki
  • J. R. Regalbuto
  • John Monnier
  • Everett E. Carpenter
Full Paper


Magnetic nanomaterials have many applications in the fields of catalysis, medicine, and environmental studies. An emerging synthetic method capable of large-scale production of nanomaterials is a continuous-flow microreactor. However, translating known conventional benchtop reactions to a continuous-flow system can be difficult; reaction parameters such as reaction time and viscosity of the solution are significant limitations in flow-based systems. In this study, nanocrystalline Cu-Ni and Cu-Co core-shell materials were successfully synthesized using a capillary microreactor in a one-step process. Ethanol was used as solvent, allowing for faster reaction times and reduced reaction solution viscosity, compared to similar bench top synthetic protocols. Both nanocomposites were tested for activity in Fischer-Tropsch and showed activity above 220 °C. This study shows that a continuous-flow capillary microreactor has the capabilities to make complex metallic nanomaterials at short reaction times with proper selection of reaction solvent systems.


continuous-flow synthesis large scale production core-shell nanocomposite Fischer-Tropsch catalyst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kodama, R. H. J. Magn. Magn. Mater. 1999, 200, 359–372.CrossRefGoogle Scholar
  2. 2.
    Huang, G.; Hu, J.; Zhang, H.; Zhou, Z.; Chi, X.; Gao, J. Nanoscale 2014, 6, 726–730.CrossRefGoogle Scholar
  3. 3.
    Smetana, A. B.; Wang, J. S.; Boeckl, J. J.; Brown, G. J.; Wai, C. M. J. Phys. Chem. C 2008, 112, 2294–2297.CrossRefGoogle Scholar
  4. 4.
    Slostowski, C.; Marre, S.; Babot, O.; Toupance, T.; Aymonier, C. Langmuir 2012, 28, 16656–16663.CrossRefGoogle Scholar
  5. 5.
    Choi, H.; Veriansyah, B.; Kim, J.; Kim, J. D.; Kang, J. W. J. Supercrit. Fluids 2010, 52, 285–291.CrossRefGoogle Scholar
  6. 6.
    Pascu, O.; Marre, S.; Aymonier, C.; Roig, A. Nanoscale 2013, 5, 2126–2132.CrossRefGoogle Scholar
  7. 7.
    Clifford, D. M.; El-Gendy, A. A.; Lu, A. J.; Pestov, D.; Carpenter, E. E. J. Flow Chem. 2014, 4, 148–152.CrossRefGoogle Scholar
  8. 8.
    Xu, L.; Srinivasakannan, C.; Peng, J.; Zhang, D.; Chen, G. Chemical Engineering and Processing: Process Intensification 2015, 93, 44–49.CrossRefGoogle Scholar
  9. 9.
    Søndergaard, M.; Bøjesen, E. D.; Christensen, M.; Iversen, B. B. Cryst. Growth Des. 2011, 11, 4027–4033.CrossRefGoogle Scholar
  10. 10.
    Testino, A.; Pilger, F.; Lucchini, M.; Quinsaat, J.; Stähli, C.; Bowen, P. Molecules 2015, 20, 10566.CrossRefGoogle Scholar
  11. 11.
    Gao, W.; Zhao, Y.; Chen, H.; Chen, H.; Li, Y.; He, S.; Zhang, Y.; Wei, M.; Evans, D. G.; Duan, X. Green Chem. 2015, 17, 1525–1534.CrossRefGoogle Scholar
  12. 12.
    Xiao, K.; Bao, Z.; Qi, X.; Wang, X.; Zhong, L.; Fang, K.; Lin, M.; Sun, Y. J. Mol. Catal. A: Chem. 2013, 378, 319–325.CrossRefGoogle Scholar
  13. 13.
    Xi, P.; Cao, Y.; Yang, F.; Ma, C.; Chen, F.; Yu, S.; Wang, S.; Zeng, Z.; Zhang, X. Nanoscale 2013, 5, 6124–6130.CrossRefGoogle Scholar
  14. 14.
    Singh, A. K.; Xu, Q. ChemCatChem 2013, 5, 652–676.CrossRefGoogle Scholar
  15. 15.
    Spivey, J. J.; Egbebi, A. Chem. Soc. Rev. 2007, 36, 1514–1528.CrossRefGoogle Scholar
  16. 16.
    Nafria, R.; Genç, A.; Ibáñez, M.; Arbiol, J.; Ramírez de la Piscina, P.; Homs, N.; Cabot, A. Langmuir 2016, 32, 2267–2276.CrossRefGoogle Scholar
  17. 17.
    Bonet, F.; Grugeon, S.; Dupont, L.; Urbina, R. H.; Guéry, C.; Tarascon, J. M. J. Solid State Chem. 2003, 172, 111–115.CrossRefGoogle Scholar
  18. 18.
    Carroll, K. J.; Calvin, S.; Ekiert, T. F.; Unruh, K. M.; Carpenter, E. E. Chem. Mater. 2010, 22, 2175–2177.CrossRefGoogle Scholar
  19. 19.
    Huba, Z. J.; Carpenter, E. E. CrystEngComm 2013, 15, 8919–8923.CrossRefGoogle Scholar
  20. 20.
    Pearson, W. B. Handbook of Lattice Spacings and Stuctures of Metals; Pergamon Press Ltd.: Oxford, 1967.Google Scholar
  21. 21.
    Cha, S. I.; Mo, C. B.; Kim, K. T.; Hong, S. H. J. Mater. Res. 2005, 20, 2148–2153.CrossRefGoogle Scholar
  22. 22.
    Ung, D.; Soumare, Y.; Chakroune, N.; Viau, G.; Vaulay, M. J.; Richard, V.; Fiévet, F. Chem. Mater. 2007, 19, 2084–2094.CrossRefGoogle Scholar
  23. 23.
    DiPietro, R. S.; Johnson, H. G.; Bennett, S. P.; Nummy, T. J.; Lewis, L. H.; Heiman, D. Appl. Phys. Lett. 2010, 96, 222506.CrossRefGoogle Scholar
  24. 24.
    Sakharov, A. M.; Mazaletskaya, L. I.; Skibida, I. P. Kinet. Catal. 2001, 42, 662–668.CrossRefGoogle Scholar
  25. 25.
    Li, T.; Wang, H.; Yang, Y.; Xiang, H.; Li, Y. Fuel Process. Technol. 2014, 118, 117–124.CrossRefGoogle Scholar
  26. 26.
    Mohandas, J. C.; Gnanamani, M. K.; Jacobs, G.; Ma, W.; Ji, Y.; Khalid, S.; Davis, B. H. ACS Catal. 2011, 1, 1581–1588.CrossRefGoogle Scholar
  27. 27.
    Dry, M. E. Appl. Catal., A 1996, 138, 319–344.CrossRefGoogle Scholar
  28. 28.
    Schulz, H. Appl. Catal., A 1999, 186, 3–12.CrossRefGoogle Scholar
  29. 29.
    Schoenitz, M.; Grundemann, L.; Augustin, W.; Scholl, S. Chem. Commun. (Cambridge, U. K.) 2015, 51, 8213–8228.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2016

Authors and Affiliations

  • Sarah E. Smith
    • 1
  • Zachary J. Huba
    • 1
  • Fahad Almalki
    • 2
  • J. R. Regalbuto
    • 2
  • John Monnier
    • 2
  • Everett E. Carpenter
    • 1
  1. 1.Department of ChemistryVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Chemical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations