Journal of Flow Chemistry

, Volume 7, Issue 1, pp 4–8 | Cite as

[3,3]-Sigmatropic Rearrangement of Low-Volatile Propargyl Thiocyanates to Allenyl Isothiocyanates Using Solution Spray Flash Vacuum Pyrolysis

  • Frank Richter
  • René Dathe
  • Jennifer Seifert
  • Klaus Banert
Full Paper


Conventional flash vacuum pyrolysis is the best method for the preparation of isothiocyanate-substituted allenes by [3,3]-sigmatropic rearrangement. These synthetically useful allenes undergo a variety of successive reactions; the most prominent is thiazole ring formation after nucleophilic attack at the isothiocyanate carbon. We now present the development and application of the solution spray method in flash vacuum pyrolysis of low- or nonvolatile propargyl thiocyanates. By using model reactions, the setup was optimized for a synthetic scale approach utilizing also steel nozzles (distributed for oil-fired heating furnaces) for spray generation. Selected examples emphasize advantages such as enabling gas-phase reactions of nonvolatile compounds and improvement of challenging syntheses via highly reactive species under different operating conditions (400–600 °C, 0.01–0.05 mbar).


solution spray flash vacuum pyrolysis allenes isothiocyanates ring formation heterocycles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

41981_2017_7010004_MOESM1_ESM.pdf (11.8 mb)
Supplementary material, approximately 12406 KB.


  1. 1.(a)
    Billeter, O. Ber. Dtsch. Chem. Ges. 1875, 8, 462–466CrossRefGoogle Scholar
  2. (b).
    Gerlich, G. Justus Liebigs Ann. Chem. 1875, 178, 80–91.CrossRefGoogle Scholar
  3. 2.
    For reviews on history, see: (a) Hansen, H.-J. Chimia 1999, 53, 163–173Google Scholar
  4. 2.(b)
    Hansen, H.-J. Chimia 2000, 54, 105–119.Google Scholar
  5. 3.(a)
    Billeter, O. Helv. Chim. Acta 1925, 8, 337–338CrossRefGoogle Scholar
  6. 3.(b)
    Mumm, O.; Richter, H. Ber. Dtsch. Chem. Ges. 1940, 73, 843–860CrossRefGoogle Scholar
  7. 3.(c)
    DeWolfe, R. H.; Young, W. G. Chem. Rev. 1956, 56, 753–901; see page 856CrossRefGoogle Scholar
  8. 3.(d)
    Smith, P. A. S.; Emerson, D. W. J. Am. Chem. Soc. 1960, 82, 3076–3082CrossRefGoogle Scholar
  9. 3.(e)
    Iliceto, A.; Fava, A.; Mazzucato, U. Tetrahedron Lett. 1960, 1, 27–35; see issue 32CrossRefGoogle Scholar
  10. 3.(f)
    Emerson, D. W.; Klapprodt Booth, J. J. Org. Chem. 1965, 30, 2480–2481CrossRefGoogle Scholar
  11. 3.(g)
    Fava, A. Org. Sulfur Compd. 1966, 2, 73–91.CrossRefGoogle Scholar
  12. 4.(a)
    Ferrier, R. J.; Vethaviyaser, N. J. Chem. Soc. C 1971, 1907–1913Google Scholar
  13. 4.(b)
    Guthrie, R. D.; Williams, G. J. J. Chem. Soc. Chem. Commun. 1971, 923–927Google Scholar
  14. 4.(c)
    Huber, S.; Stamouli, P.; Jenny, T.; Neier, R. Helv. Chim. Acta 1986, 69, 1898–1915.CrossRefGoogle Scholar
  15. 5.(a)
    Henry, L. Ber. Dtsch. Chem. Ges. 1873, 6, 728–730CrossRefGoogle Scholar
  16. 5.(b)
    Midtgaard, T.; Gundersen, G.; Nielsen, C. J. J. Mol. Struct. 1988, 176, 159–179.CrossRefGoogle Scholar
  17. 6.(a)
    Banert, K.; Hückstädt, H.; Vrobel, K. Angew. Chem. 1992, 104, 72–74CrossRefGoogle Scholar
  18. 6.(b)
    Banert, K.; Hückstädt, H.; Vrobel, K. Angew. Chem., Int. Ed. Engl. 1992, 31, 90–92.CrossRefGoogle Scholar
  19. 7.
    Banert, K.; Richter, F.; Hagedorn, M. Org. Process Res. Dev. 2015, 19, 1068–1070.CrossRefGoogle Scholar
  20. 8.(a)
    Banert, K.; Groth, S.; Jawabrah Al-Hourani, B.; Vrobel, K. Synthesis 2005, 2920–2926Google Scholar
  21. 8.(b)
    Jawabrah Al-Hourani, B.; Banert, K.; Gomaa, N.; Vrobel, K. Tetrahedron 2008, 64, 5590–5597CrossRefGoogle Scholar
  22. 8.(c)
    Jawabrah Al-Hourani, B.; Banert, K.; Rüffer, T.; Walfort, B.; Lang, H. Heterocycles 2008, 75, 2667–2679.CrossRefGoogle Scholar
  23. 9.
    Banert, K.; Groth, S.; Hückstädt, H.; Lehmann, J.; Schlott, J.; Vrobel, K. Synthesis 2002, 1423–1433.Google Scholar
  24. 10.(a)
    Clancy, M. G.; Hesabi, M. M.; Meth-Cohn, O. J. Chem. Soc., Chem. Comm. 1980, 1112–1113Google Scholar
  25. 10.(b)
    Meth-Cohn, O.; Rhouti, S.; J. Chem. Soc., Chem. Comm. 1980, 1161–1163Google Scholar
  26. 10.(c)
    Rubin, Y.; Lin, S. S.; Knobler, C. B.; Anthony, J.; Doldi, A. M.; Diederich, F. J. Am. Chem. Soc. 1991, 113, 6943–6949CrossRefGoogle Scholar
  27. 10.(d)
    Ohno, M.; Itoh, M.; Umeda, M.; Furuta, R.; Kondo, K.; Eguchi, S. J. Am. Chem. Soc. 1996, 118, 7075–7082CrossRefGoogle Scholar
  28. 10.(e)
    Régimbald-Krnel, M.; Wentrup, C. J. Org. Chem. 1998, 63, 8417–8423CrossRefGoogle Scholar
  29. 10.(f)
    Meth-Cohn, O. Acc. Chem. Res. 1987, 20, 18–27.CrossRefGoogle Scholar
  30. 11.
    For details, see Supporting Information.Google Scholar
  31. 12.
    Jeon, H.-B.; Sun, G.; Sayre, L. M. Biochim. Biophys. Acta 2003, 1647, 343–354; Chem. Abstr. 2003, 139, 209740b.CrossRefGoogle Scholar
  32. 13.
    Austin, P. W. (Imperial Chemical Industries) EP 244962, 1987; Chem. Abstr. 1988, 108, P 89483d.Google Scholar
  33. 14.
    Toyo Soda Mfg. Co., Ltd., Patent JP57179102, 1982; Chem. Abstr. 1983, 98, 102715c.Google Scholar
  34. 15.
    Fraser, M.M.; Raphael, R. A. J. Chem. Soc. (Resumed) 1955, 4280–4283.Google Scholar
  35. 16.
    Iranpoor, N.; Firouzabadi, H.; Akhlaghinia, B.; Azadi, R. Synthesis 2004, 92–96.Google Scholar

Copyright information

© Akadémiai Kiadó 2016

Authors and Affiliations

  • Frank Richter
    • 1
  • René Dathe
    • 1
  • Jennifer Seifert
    • 1
  • Klaus Banert
    • 1
  1. 1.Chemnitz University of Technology, Organic ChemistryChemnitzGermany

Personalised recommendations