Journal of Flow Chemistry

, Volume 6, Issue 4, pp 315–322 | Cite as

Reduction of Catalyst Deactivation Effects on Styrene Monomer Production in Multistage Radial Fixed Bed Reactor

  • Fatemeh Bahadori
  • Alireza Azizi
  • Kamran Ghasemzadeh
Full Paper


In the present study, ethylbenzene dehydrogenation to styrene monomer over a potassium-promoted iron oxide catalyst in radial fixed bed reactor was simulated. The pseudo-heterogeneous model was employed to predict ethylbenzene conversion and selectivity of styrene monomer, toluene, and benzene. The simulation results showed that deactivation of catalysts causes reduction in the reaction zone; therefore, the ethylbenzene conversion decreases. It is proposed that, for compensating the conversion reduction, the feed temperature is increased 1 °C per 5 cm of deactivated length. Simulation results are in good agreement with the experimental data obtained from real plant.


styrene monomer ethylbenzene radial fixed bed reactor conversion selectivity 


  1. [1]
    Liu, B. S.; Rui, G.; Chang, R. Z.; Au, C. T. Appl. Catal., A 2008, 335, 88–94.CrossRefGoogle Scholar
  2. [2]
    Oliveira, A. C.; Valentini, A.; Nobre, P. S. S.; Rangel, M. C. React. Kinet. Catal. Lett. 2002, 75, 1–4.Google Scholar
  3. [3]
    Coulter, K.; Goodman D. W.; Moore, R. G. Catal. Lett. 1995, 31, 1–8.CrossRefGoogle Scholar
  4. [4]
    Burri, D. R.; Choi, K.-M.; Lee, J.-H.; Han, D.-S.; Park, S.-E. Catal. Commun. 2007, 8 43–48.CrossRefGoogle Scholar
  5. [5]
    Reddy, B. M.; Lee, S.-C.; Han, D.-S.; Park, S.-E. Appl. Catal., B 2009, 87, 230–238.CrossRefGoogle Scholar
  6. [6]
    Ji, M.; Chen, G.; Wang, J.; Wang, X.; Zhang, T. Catal. Today 2010, 158, 464–469.CrossRefGoogle Scholar
  7. [7]
    Nederlof, C.; Zarubina, V.; Melian-Cabrera, I. V.; Heeres, E. H. J.; Kapteijn, F.; Makkee, M. Appl. Catal., A 2014, 476, 204–214.CrossRefGoogle Scholar
  8. [8]
    Wang, Q.; Li, X.; Li, W.; Feng, J. Catal. Commun. 2014, 50, 21–24.CrossRefGoogle Scholar
  9. [9]
    Bautista, F. M.; Campelo, J. M.; Luna, D.; Marinas, J. M.; Quiro’s, R. A.; Romero, A. A. App. Catal., B 2007, 70, 611–620.CrossRefGoogle Scholar
  10. [10]
    Liao, S.-J.; Chen, T.; Miao, C.-X.; Yang, W.-M.; Xie, Z.-K.; Chen, Q.-L. Catal. Commun. 2008, 9, 1817–1821.CrossRefGoogle Scholar
  11. [11]
    de Araujo, J. C. S.; Sousa, Ch. B. A.; Oliveira, A. C.; Freire, F. N. A.; Ayala, A. P.; Oliveira, A. C. App. Catal., A 2010, 377, 55–63.CrossRefGoogle Scholar
  12. [12]
    Castro, A. J. R.; Soares, J. M.; Filho, J. M.; Oliveira, A. C.; Campos, A.; Milet, E. R. C. Fuel 2013, 108, 740–748.CrossRefGoogle Scholar
  13. [13]
    Burri, A.; Jiang, N.; Yahyaoui, Kh.; Park, S. E. App. Catal., A 2015, 495, 192–199.CrossRefGoogle Scholar
  14. [14]
    McKetta, J. Encyclopedia of Chemical Processing and Design, vol. 55; Marcel Dekker: New York, 1996; pp. 197–216.Google Scholar
  15. [15]
    Sun, A.; Qin, Zh.; Chen, Sh.; Wang, J. Catal. Today, 2004, 93, 273–279.CrossRefGoogle Scholar
  16. [16]
    Sheel, J. G. P.; Crowe, C. M. Can. J. Chem. Eng. 1969, 47, 183–187.CrossRefGoogle Scholar
  17. [17]
    Hirano, T. Appl. Catal. 1986, 26, 81–90.CrossRefGoogle Scholar
  18. [18]
    Tamsilian, Y.; Nejad Ebrahimi, A.; Ramazani, A.; Abdollahzadeh, H. Comput. Chem. Eng. 2012, 40, 1–11.CrossRefGoogle Scholar
  19. [19]
    Fogler, H. S. Elements of Chemical Reaction Engineering, 4th edition; Prentice Hall: New Jersey, 2005Google Scholar
  20. [20]
    Perry, R. H.; Green, D. W. Perry’s Chemical Engineers’ Handbook, 8th edition; McGraw-Hill: New York, 2007.Google Scholar
  21. [21]
    Wenner, R. R.; Dybdal, E. C. Chem. Eng. Prog. 1948, 44, 275–281.Google Scholar
  22. [22]
    Carra, S.; Forni, L. Ind. Eng. Chem. Proc. Des. Dev. 1965, 4, 281.CrossRefGoogle Scholar
  23. [23]
    Devoldere, K. R.; Froment, G. F. Ind. Eng. Chem. Res. 1999, 38, 2626–2633.CrossRefGoogle Scholar
  24. [24]
    Zhu, X. M.; Schön, M.; Bartmann, U.; Veen, A. C. V.; Muhler, M.; App. Catal., A 2004, 266, 99–108.CrossRefGoogle Scholar
  25. [25]
    Ye, X.; Ma, N.; Hua, W.; Yue, Y.; Miao, Ch.; Xie, Z. J. Mol. Catal. A: Chem. 2004, 217, 103–108.CrossRefGoogle Scholar
  26. [26]
    Dulamita, N.; Maicaneanu, A.; Sayle, D. C.; Stanca, M.; Craciun, R.; Olea, M.; Appl. Catal., A 2005, 287, 9–18.CrossRefGoogle Scholar
  27. [27]
    Ohishi, Y; Kawabata, T.; Shishido, T.; Takaki, K.; Zhang, Q.; Wang, Y.; Nomura, K. Takehira, K. Appl. Catal., A 2005, 288, 220–231.CrossRefGoogle Scholar
  28. [28]
    Bin, X.; Hengyong, X.; Wenzhao, L. Chin. J. Catal. 2007, 28, 541–548.Google Scholar
  29. [29]
    Braga, T. P.; Pinheiro, A. N.; Teixeira, C. V.; Valentini, A. Appl. Catal., A 2009, 366, 193–200.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2016

Authors and Affiliations

  • Fatemeh Bahadori
    • 1
  • Alireza Azizi
    • 1
    • 2
  • Kamran Ghasemzadeh
    • 1
  1. 1.Chemical Engineering DepartmentUrmia University of TechnologyUrmiaIran
  2. 2.Tabriz Petrochemical CompanyTabrizIran

Personalised recommendations