Skip to main content

Delivering Enhanced Efficiency in the Synthesis of α-Diazosulfoxides by Exploiting the Process Control Enabled in Flow

Abstract

Continuous-flow generation of α-diazosulfoxides results in a two- to three-fold increase in yields and decreased reaction times compared to standard batch synthesis methods. These high yielding reactions are enabled by flowing through a bed of polystyrene-supported base (PS-DBU or PS-NMe2) with highly controlled residence times. This engineered solution allows the α-diazosulfoxides to be rapidly synthesized while limiting exposure of the products to basic reaction conditions, which have been found to cause rapid decomposition. In addition to improved yields, this work has the added advantage of ease of processing, increased safety profile, and scale-up potential.

References

  1. 1.

    Wegner, J.; Ceylan, S.; Kirschning, A. Adv. Synth. Cat. 2012, 354, 17.

    CAS  Article  Google Scholar 

  2. 2.

    Wirth, T. Microreactors in Organic Synthesis and Catalysis; Wiley-VCH: Weinheim, 2008; vol. 14.

    Book  Google Scholar 

  3. 3.

    Baxendale, I. R.; Brocken, L.; Mallia, C. J. Green Process. Synth. 2013, 2, 211.

    CAS  Google Scholar 

  4. 4.

    Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013, 42, 8849.

    CAS  Article  Google Scholar 

  5. 5.

    Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675.

    CAS  Article  Google Scholar 

  6. 6.

    McQuade, D. T.; Seeberger, P. H. J. Org. Chem. 2013, 78, 6384.

    CAS  Article  Google Scholar 

  7. 7.

    Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Angew. Chem., Int. Ed. 2011, 50, 7502.

    CAS  Article  Google Scholar 

  8. 8.

    Gutmann, B.; Cantillo, D.; Kappe, C. O. Angew. Chem., Int. Ed. 2015, 54, 6688.

    CAS  Article  Google Scholar 

  9. 9

    Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Myers, R. M. Angew. Chem., Int. Ed. 2015, 54, 3449.

    CAS  Article  Google Scholar 

  10. 10.

    Porta, R.; Benaglia, M.; Puglisi, A. Org. Pro. Res. Dev. 2016, 20, 2.

    CAS  Article  Google Scholar 

  11. 11.

    Deadman, B. J.; Collins, S. G.; Maguire, A. R. Chem. Eur. J. 2015, 21, 2298.

    CAS  Article  Google Scholar 

  12. 12.

    Müller, S. T. R.; Wirth, T. ChemSusChem 2015, 8, 245.

    Article  Google Scholar 

  13. 13.

    Malet-Sanz, L.; Susanne, F. J. Med. Chem. 2012, 55, 4062.

    CAS  Article  Google Scholar 

  14. 14.

    Battilocchio, C.; Feist, F.; Hafner, A.; Simon, M.; Tran, D. N.; Allwood, D. M.; Blakemore, D. C.; Ley, S. V. Nat. Chem. 2016, 8, 360.

    CAS  Article  Google Scholar 

  15. 15.

    Li, J.; Ballmer, S. G.; Gillis, E. P.; Fujii, S.; Schmidt, M. J.; Palazzolo, A. M. E.; Lehmann, J. W.; Morehouse, G. F.; Burke, M. D. Science 2015, 347, 1221.

    CAS  Article  Google Scholar 

  16. 16.

    Adamo, A.; Beingessner, R. L.; Behnam, M.; Chen, J.; Jamison, T. F.; Jensen, K. F.; Monbaliu, J.-C. M.; Myerson, A. S.; Revalor, E. M.; Snead, D. R.; Stelzer, T.; Weeranoppanant, N.; Wong, S. Y.; Zhang, P. Science 2016, 352, 61.

    CAS  Article  Google Scholar 

  17. 17.

    Tsubogo, T.; Oyamada, H.; Kobayashi, S. Nature 2015, 520, 329.

    CAS  Article  Google Scholar 

  18. 18.

    Deadman, B. J.; O’Mahony, R. M.; Lynch, D.; Crowley, D. C.; Collins, S. G.; Maguire, A. R. Org. Biomol. Chem. 2016, 14, 3423.

    CAS  Article  Google Scholar 

  19. 19.

    Tarrant, E.; O’Brien, C. V.; Collins, S. G. RSC Adv. 2016, 6, 31202.

    CAS  Article  Google Scholar 

  20. 20.

    Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.

    CAS  Article  Google Scholar 

  21. 21.

    Müller, S. T. R.; Murat, A.; Hellier, P.; Wirth, T. Org. Pro. Res. Dev. 2016, 20, 495.

    Article  Google Scholar 

  22. 22.

    Müller, S. T. R.; Murat, A.; Maillos, D.; Lesimple, P.; Hellier, P.; Wirth, T. Chem. Eur. J. 2015, 21, 7016.

    Article  Google Scholar 

  23. 23.

    Regitz, M. Angew. Chem., Int. Ed. 1967, 6, 733.

    CAS  Article  Google Scholar 

  24. 24.

    Hodson, D.; Holt, G. J. Chem. Soc. C: Org. 1968, 1602.

    Google Scholar 

  25. 25.

    Maguire, A. R.; Collins, S. G.; Ford, A. Arkivoc 2003, 7, 96.

    Google Scholar 

  26. 26.

    Maguire, A. R.; Kelleher, P. G.; Ferguson, G.; Gallagher, J. F. Tetrahedron Lett. 1998, 39, 2819.

    CAS  Article  Google Scholar 

  27. 27.

    Collins, S. G.; O’Sullivan, O. C. M.; Kelleher, P. G.; Maguire, A. R. Org. Biomol. Chem. 2013, 11, 1706.

    CAS  Article  Google Scholar 

  28. 28.

    O’Sullivan, O. C. M.; Collins, S. G.; Maguire, A. R.; Böhm, M.; Sander, W. Eur. J. Org. Chem. 2006, 2006, 2918.

    Article  Google Scholar 

  29. 29.

    O’Sullivan, O.; Collins, S.; Maguire, A. Synlett 2008, 2008, 659.

    Article  Google Scholar 

  30. 30.

    Sander, W.; Strehl, A.; Maguire, A. R.; Collins, S. G.; Kelleher, P. G. Eur. J. Org. Chem. 2000, 2000, 3329.

    Article  Google Scholar 

  31. 31.

    O’Sullivan, O. C. M.; Collins, S. G.; Maguire, A. R.; Buche, G. Eur. J. Org. Chem. 2014, 2014, 2297.

    Article  Google Scholar 

  32. 32.

    Zwanenburg, B. J. Sulfur Chem. 2013, 34, 142.

    CAS  Article  Google Scholar 

  33. 33.

    Zwanenburg, B. Phosphorus, Sulfur Silicon Relat. Elem. 1989, 43, 1.

    CAS  Article  Google Scholar 

  34. 34.

    Zwanenburg, B. Recl. Trav. Chim. Pays-Bas 1982, 101, 1.

    CAS  Article  Google Scholar 

  35. 35.

    Zwanenburg, B.; Damen, T. J. G.; Philipse, H. J. F.; De Laet, R. C.; Lucassen, A. C. B. Phosphorus, Sulfur Silicon Relat. Elem. 1999, 153, 119.

    Article  Google Scholar 

  36. 36.

    McCaw, P. G.; Buckley, N. M.; Collins, S. G.; Maguire, A. R. Eur. J. Org. Chem. 2016, 2016, 1630.

    CAS  Article  Google Scholar 

  37. 37.

    Maguire, A. R.; Kelleher, P. G.; Lawrence, S. E. Tetrahedron Lett. 1998, 39, 3849.

    CAS  Article  Google Scholar 

  38. 38.

    Hazen, G. G.; Weinstock, L. M.; Connell, R.; Bollinger, F. W. Synth. Commun. 1981, 11, 947.

    CAS  Article  Google Scholar 

  39. 39.

    Mándity, I. M.; Ötvös, S. B.; Fülöp, F. ChemistryOpen 2015, 4, 212.

    Article  Google Scholar 

  40. 40.

    Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach, A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.; Taylor, S. J. J. Chem. Soc., Perk. Trans. 1 2000, 3815.

    Google Scholar 

  41. 41.

    Kupracz, L.; Hartwig, J.; Wegner, J.; Ceylan, S.; Kirschning, A.; Beilstein, J. Org. Chem. 2011, 7, 1441.

    CAS  Google Scholar 

  42. 42.

    Bihani, M.; Bora, P. P.; Bez, G.; Askari, H. Comp. Rend. Chim. 2013, 16, 419.

    CAS  Article  Google Scholar 

  43. 43.

    Bonfils, F.; Cazaux, I.; Hodge, P.; Caze, C. Org. Biomol. Chem. 2006, 4, 493.

    CAS  Article  Google Scholar 

  44. 44.

    Tamborini, L.; Romanom D.; Pinto, A.; Bertolani, A.; Molinari, F.; Conti, P. J. Mol. Catal. B: Enzym. 2012, 84, 78.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Anita R. Maguire or Stuart G. Collins.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McCaw, P.G., Deadman, B.J., Maguire, A.R. et al. Delivering Enhanced Efficiency in the Synthesis of α-Diazosulfoxides by Exploiting the Process Control Enabled in Flow. J Flow Chem 6, 226–233 (2016). https://doi.org/10.1556/1846.2016.00013

Download citation

Keywords

  • diazo transfer
  • sulfoxides
  • continuous flow
  • immobilized base
  • solid-phase synthesis
  • residence time control