Advertisement

Journal of Flow Chemistry

, Volume 6, Issue 4, pp 302–308 | Cite as

Microfluidic Implementation of Ru-Catalyzed Methylation of Amines Using CO2 as Carbon Source

  • Gary Perkins
  • Omar Khatib
  • Matthew Peterson
  • Annukka Kallinen
  • Tien Pham
  • Alison Ung
  • Ivan Greguric
  • Giancarlo Pascali
Full Paper

Abstract

Carbon dioxide chemistry is an area of continuing growth in recent times, due to socioeconomic and environmental reasons. Several methods have now been reported for obtaining N-methylation on primary and secondary amines directly from CO2. We have translated in two microfluidic setups (Slug Flow [SF] and Tube-in-Tube [TiT]) a ruthenium (Ru)-catalyzed process previously reported using a pressure vessel. Here, we demonstrate how the SF approach is more efficient but requires more input to reach a steady state, while the TiT system is less efficient but more tuneable. We have tested these processes on three model amines and two radiopharmaceutical precursors that are routinely used in 11C chemistry. The microfluidic processes tested are also potentially more efficient than the pressure vessel counterpart, in terms of amount of Ru catalyst needed (1% vs. 10%) and projected reaction completion time.

Keywords

methylation carbon dioxide ruthenium slug flow tube in tube 11

Supplementary material

41981_2016_6040302_MOESM1_ESM.pdf (667 kb)
Supplementary material, approximately 683 KB.

References

  1. 1.
    Yu, K. M. K.; Curcic, I.; Gabriel. J.; Tsang, S. C. E. ChemSusChem 2008, 1, 893–899.CrossRefGoogle Scholar
  2. 2.
    Yuan, Z.; Eden, M. R.; Gani, R. Ind. Eng. Chem. Res. 2015, 55, 3383–3419.CrossRefGoogle Scholar
  3. 3.
    Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703–706.CrossRefGoogle Scholar
  4. 4.
    D’Alessandro, D. M.; Smit, B.; Long, J. R. Angew. Chem., Int. Ed. Engl. 2010, 49, 6058–6082.CrossRefGoogle Scholar
  5. 5.
    Giri, N.; Del Pópolo, M. G.; Melaugh, G.; Greenaway, R. L.; Râtzke, K.; Koschine, T.; Pison, L.; Gomes, M. F. C.; Cooper, A. I.; James, S. L. Nature 2015, 527, 216–220.CrossRefGoogle Scholar
  6. 6.
    Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. ACS Appl. Mater. Interfaces 2011, 3, 2594–2600.CrossRefGoogle Scholar
  7. 7.
    White, J. L.; Baruch, M. F.; Pander, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; Shaw, T. W.; Abelev, E.; Bocarsly, A. B. Chem. Rev. 2015, 115, 12888–12935.CrossRefGoogle Scholar
  8. 8.
    Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Angew. Chem., Int. Ed. Engl. 2011, 50, 8510–8537.CrossRefGoogle Scholar
  9. 9.
    Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem., Int. Ed. Engl. 2008, 47, 8998–9033.CrossRefGoogle Scholar
  10. 10.
    Jacquet, O.; Frogneux, X.; Das Neves Gomes, C.; Cantat, T. Chem. Sci. 2013, 4, 2127–2131.CrossRefGoogle Scholar
  11. 11.
    Santoro, O.; Lazreg, F.; Minenkov, Y.; Cavallo, L.; Cazin, C. S. J. Dalt. Trans. 2015, 44, 18138–18144.CrossRefGoogle Scholar
  12. 12.
    Das, S.; Bobbink, F. D.; Laurenczy, G.; Dyson, P. J. Angew. Chem., Int. Ed. 2014, 126, 13090–13093.Google Scholar
  13. 13.
    Li, Y.; Fang, X.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 9568–9571.CrossRefGoogle Scholar
  14. 14.
    Li, Y.; Sorribes, I.; Yan, T.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 12156–12160.Google Scholar
  15. 15.
    Sorribes, I.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2014, 136, 14314–14319.CrossRefGoogle Scholar
  16. 16.
    Liger, F.; Eijsbouts, T.; Cadarossanesaib, F.; Tourvieille, C.; Le Bars, D.; Billard, T. Eur J. Org. Chem. 2015, 29, 6434–6438.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2016

Authors and Affiliations

  • Gary Perkins
    • 1
  • Omar Khatib
    • 2
  • Matthew Peterson
    • 1
    • 3
  • Annukka Kallinen
    • 1
    • 4
  • Tien Pham
    • 1
  • Alison Ung
    • 2
  • Ivan Greguric
    • 1
  • Giancarlo Pascali
    • 1
  1. 1.Australian Nuclear Science and Technology Organization (ANSTO)Australia
  2. 2.University Technology of Sydney (UTS)Australia
  3. 3.University of New South Wales (UNSW)Australia
  4. 4.University of SydneyAustralia

Personalised recommendations