Journal of Flow Chemistry

, Volume 5, Issue 4, pp 241–247 | Cite as

Highlights from the Flow Chemistry Literature 2015 (Part 3)

  • Amol A. Kulkarni
Research Highlights


In this section of the journal, the literature on continuous-flow synthesis (primarily organic synthesis and functional materials) from the period of July to September 2015 is presented. All the publications are listed and ordered by journal name, with a few review articles appearing at the end. With a few special issues related to flow synthesis and advances in organic process development, the number of publications on flow synthesis has grown steadily in this period. This also shows the growing interest of the community in adapting to flow synthesis.


  1. “Organo-chlorinated thin films deposited by atmospheric pressure plasma-enhanced chemical vapor deposition for adhesion enhancement between rubber and zinc-plated steel monofilaments” C. Vandenabeele, S. Bulou, R. Maurau, F. Siffer, T. Belmonte, P. Choquet ACS Applied Materials & Interfaces 2015, 7, 14317–14327CrossRefGoogle Scholar
  2. “Translating the enantioselective michael reaction to a continuous flow paradigm with an immobilized, fluorinated organocatalyst” I. Sagamanova, C. Rodrïguez-Escrich, I. G. Molnár, S. Sayalero, R. Gilmour, M. A. Pericàs ACS Catalysis 2015, 5, 6241–6248CrossRefGoogle Scholar
  3. “Continuous flow metathesis for direct valorization of food waste: an example of cocoa butter triglyceride” C. Schotten, D. Plaza, S. Manzini, S. P. Nolan, S. V. Ley, D. L. Browne, A. Lapkin ACS Sustainable Chemistry & Engineering 2015, 3, 1453–1459CrossRefGoogle Scholar
  4. “Construction of 2-(2’-hydroxy-5’-methylphenyl) benzotriazole over Pdγ-Al2O3 by a continuous process” B. Wang, W. Fang, L. Si, Y. Li, X. Yan, L. Chen, S. Wang ACS t Sustainable Chemistry & Engineering 2015, 3, 1890–1896CrossRefGoogle Scholar
  5. “Separation of conglomerate forming enantiomers using a novel continuous preferential crystallization process” T. Vetter, C. L. Burcham, M. F. Doherty AIChE Journal 2015, 61, 2810–2823CrossRefGoogle Scholar
  6. “On-chip dilution in nanoliter droplets” R. Thakur, A. M. Amin, S. Wereley Analyst 2015, 140, 5855–5859CrossRefGoogle Scholar
  7. “Flow and microwave-assisted synthesis of N-(triethylene glycol) glycine oligomers and their remarkable cellular transporter activities” T. Jong, A. M. Pérez-López, E. M. V. Johansson, A. Lilienkampf, M. Bradley Bioconjugate Chemistry 2015, 26, 1759–1765CrossRefGoogle Scholar
  8. “One-pot reductive amination of aldehydes with nitroarenes over an Au/Al2O3 catalyst in a continuous flow reactor” E. A. Artiukha, A. L. Nuzhdin, G. A. Bukhtiyarova, S. Y. Zaytsev, P. E. Plyusnin, Y. V. Shubin, V. I. Bukhtiyarov Catalysis Science & Technology 2015, 5, 4741–4745CrossRefGoogle Scholar
  9. “Continuous poly (2-oxazoline) triblock copolymer synthesis in a microfluidic reactor cascade” E. Baeten, B. Verbraeken, R. Hoogenboom, T. Junkers Chemical Communications 2015, 51, 11701–11704CrossRefGoogle Scholar
  10. “Continuous flow of nitroso Diels–Alder reaction” E. Nakashima, H. Yamamoto Chemical Communications 2015, 51, 12309–12312CrossRefGoogle Scholar
  11. “Large-scale continuous hydrothermal production and activation of ZIF-8” A. S. Munn, P. W. Dunne, S. V. Y. Tang, E. H. Lester Chemical Communications 2015, 51, 12811–12814CrossRefGoogle Scholar
  12. “Low temperature in situ Raman spectroscopy of an electro-generated arylbis(arylthio)sulfonium ion” K. Matsumoto, Y. Miyamoto, K. Shimada, Y. Morisawa, H. Zipse, S. Suga, Jun-ichi Yoshida, S. Kashimura, and T. Wakabayashi Chemical Communications 2015, 51, 13106–13109CrossRefGoogle Scholar
  13. “Simultaneous solvent screening and reaction optimization in microliter slugs” B. J. Reizman, K. F. Jensen Chemical Communications 2015, 51, 13290–13293CrossRefGoogle Scholar
  14. “Continuous synthesis of methanol: heterogeneous hydrogenation of ethylene carbonate over Cu/HMS catalysts in a fixed bed reactor system” X. Chen, Y. Cui, C. Wen, B. Wang, W. L. Dai Chemical Communications 2015, 51, 13776–13778CrossRefGoogle Scholar
  15. “Continuous flow synthesis of a carbon-based molecular cage macrocycle via a three-fold homocoupling reaction” M. Kitchin, K. Konstas, C. J. Sumby, M. L. Czyz, P. Valente, M. R. Hill, C. J. Doonan Chemical Communications 2015, 51, 14231–14234CrossRefGoogle Scholar
  16. “Continuous crystallization of ZnO nanoparticles by spray flash evaporation versus batch synthesis” M. Klaumünzer L. Schlur, F. Schnell, D. Spitzer Chemical Engineering & Technology, 38, 1477–1484Google Scholar
  17. “Continuous synthesis and thermal elimination of sulfinyl-route poly (p-phenylene vinylene) in consecutive flow reactions” N. Zaquen, E. Baeten, J. Vandenbergh, L. Lutsen, D. Vanderzande, T. Junkers Chemical Engineering & Technology 2015, 38, 1749–1757CrossRefGoogle Scholar
  18. “Effect of process parameters on properties of colloids in a continuous-flow microreactor system” S. H. Sonawane, M. L. Bari, Suryawanshi, J. S. Narkhede, S. Mishra, B. A. Bhanvase Chemical Engineering & Technology 2015, 38, 1765–1773CrossRefGoogle Scholar
  19. “Continuous flow polymer synthesis toward reproducible large-scale production for efficient bulk heterojunction organic solar cells” G. Pirotte, J. Kesters, P. Verstappen, S. Govaerts, J. Manca, L. Lutsen, W. Maes ChemSusChem 2015, 8, 3228–3233CrossRefGoogle Scholar
  20. “Gas–liquid segmented flow microwave-assisted synthesis of MOF-74 (Ni) under moderate pressures” G. H. Albuquerque, R. C. Fitzmorris, M. Ahmadi, N. Wannenmacher, P. K. Thallapally, B. P. McGrail, G. S. Herman CrystEngComm 2015, 17, 5502–5510CrossRefGoogle Scholar
  21. “Continuous synthesis of dispersant-coated hydroxyapatite plates” M. Gimeno-Fabra, F. Hild, P. W. Dunne, K. Walton, D. M. Grant, D. J. Irvine, E. H. Lester CrystEngComm 2015, 17, 6175–6182CrossRefGoogle Scholar
  22. “Nucleation studies of active pharmaceutical ingredients in an air-segmented microfluidic drop-based crystallizer” J. Lu, J. D. Litster, Z. K. Nagy Crystal Growth & Design 2015, 15, 3645–3651CrossRefGoogle Scholar
  23. “Nucleation and growth of cobalt oxide nanoparticles in a continuous hydrothermal reactor under laminar and turbulent flow” C. J. Denis, C. J. Tighe, R. I. Gruar, N. M. Makwana, J. A. Darr Crystal Growth & Design 2015, 15, 4256–4265CrossRefGoogle Scholar
  24. “Continuous spherical crystallization of albuterol sulfate with solvent recycle system” K. Tahara, M. O’Mahony, A. S. Myerson Crystal Growth & Design 2015, 15, 5149–5156CrossRefGoogle Scholar
  25. “Pilot-scale fluidized-bed co-gasification of palm kernel shell with sub-bituminous coal” C. F. Valdés, G. Marrugo, F. Chejne, J. I. Montoya, C. A. Gómez Energy & Fuels 2015, 29, 5894–5901CrossRefGoogle Scholar
  26. “Hydrothermal liquefaction of microalgae in a continuous stirred-tank reactor” D. López Barreiro, B. Ríos Gómez, U. Hornung, A. Kruse, W. Prins Energy & Fuels 2015, 29, 6422–6432CrossRefGoogle Scholar
  27. “Automated serendipity with self-optimizing continuous-flow reactors” Z. Amara, E. S. Streng, R. A. Skilton, J. Jin, M. W. George, M. Poliakoff European Journal of Organic Chemistry 2015, 2015, 6141–6145CrossRefGoogle Scholar
  28. “Influence of microphase morphology and long-range ordering on foaming behavior of PE-b-PEO diblock copolymers” Y. Xu, T. Liu, W.-k. Yuan, L. Zhao Industrial & Engineering Chemistry Research 2015, 54, 7113–7121CrossRefGoogle Scholar
  29. “Insights into the Diels–Alder reactions between cyclopentadiene and 1, 3-butadiene with high temperature and high pressure” K. Cao, X. Liu, Y. Zhang, J.-l. Shi, Y.-x. Song, Z. Yao Industrial & Engineering Chemistry Research 2015, 54, 7565–7570CrossRefGoogle Scholar
  30. “Enzymatic fatty acid hydroxylation in a liquid–liquid slug flow microreactor” I. Iliuta, A. Garnier, M. C. Iliuta Industrial & Engineering Chemistry Research 2015, 54, 7787–7799CrossRefGoogle Scholar
  31. “Development of a dual-stage continuous flow reactor for hydrothermal synthesis of hybrid nanoparticles” H. L. Hellstern, J. Becker, P. Hald, M. Bremholm, A. Mamakhel, B. B. Iversen Industrial & Engineering Chemistry Research 2015, 54, 8500–8508CrossRefGoogle Scholar
  32. “A Tandem, bicatalytic continuous flow cyclopropanation-homo-Nazarov-type cyclization” J. Aponte-Guzmán, R. Shenje, Y. Huang, W. H. Woodham, S. R. Saunders, S. M. Mostaghimi K. R. Flack, P. Pollet, C. A. Eckert, C. L. Liotta, S. France Industrial & Engineering Chemistry Research 2015, 54, 9550–9558CrossRefGoogle Scholar
  33. “Heterocyclization approach for electrooxidative coupling of functional primary alkylamines with aromatics” T. Morofuji, A. Shimizu, Jun-ichi Yoshida Journal of the American Chemical Society 2015, 137, 9816–9819CrossRefGoogle Scholar
  34. “Recent advances in continuous rhodium-catalyzed hydroformylation” X. Wang Journal of Flow Chemistry 2015, 5, 125–132CrossRefGoogle Scholar
  35. “Continuous-flow synthesis and purification of atropine with sequential in-line separations of structurally similar impurities” C. Dai, D. R. Snead, P. Zhang, T. F. Jamison Journal of Flow Chemistry 2015, 5, 133–138CrossRefGoogle Scholar
  36. “Rapid-flow synthesis of Zn–Qn complexes: teaching old ligands new tricks with reactive Na2(HZnEt2)2” L. Z. Miller, J. J. Hrudka, Y. R. Naro, M. Haaf, M. Shatruk, D. T. McQuade Journal of Flow Chemistry 2015, 5, 139–141CrossRefGoogle Scholar
  37. “Efficient continuous-flow synthesis of macrocyclic triazoles” A. Bédard, J. Santandrea, S. K. Collins Journal of Flow Chemistry 2015, 5, 142–144CrossRefGoogle Scholar
  38. “A flow-based synthesis of telmisartan” A. D. Martin, A. R. Siamaki, K. Belecki, B. F. Gupton Journal of Flow Chemistry 2015, 5, 145–147CrossRefGoogle Scholar
  39. “The preparation of ethyl levulinate facilitated by flow processing: the catalyzed and uncatalyzed esterification of levulinic acid” M. P. Negus, A. C. Mansfield, N. E. Leadbeater Journal of Flow Chemistry 2015, 5, 148–150CrossRefGoogle Scholar
  40. “Protein and antibody functionalization using continuous flow microreactor technology” M. M. Sebeika, N. G. Gedeon, Sadler, N. L. Kern, D. J. Wilkins, D. E. Bell, G. B. Jones Journal of Flow Chemistry 2015, 5, 151–154CrossRefGoogle Scholar
  41. “Development of a photolabile amine protecting group suitable for multistep flow synthesis” H. Yueh, A. Voevodin, Beeler Journal of Flow Chemistry 2015, 5, 155–159CrossRefGoogle Scholar
  42. “Mass transfer characteristics of ozonolysis in microreactors and advanced-flow reactors” M. J. Nieves-Remacha, K. F. Jensen Journal of Flow Chemistry 2015, 5, 160–165CrossRefGoogle Scholar
  43. “When solids stop flow chemistry in commercial tubing” Y. Chen, J. C. Sabio, R. L. Hartman Journal of Flow Chemistry 2015, 5, 166–171CrossRefGoogle Scholar
  44. “An efficient and more sustainable one-step continuous-flow multicomponent synthesis approach to chromene derivatives” B. Reddy Vaddula, S. Yalla, M. A. Gonzalez Journal of Flow Chemistry 2015, 5, 172–177CrossRefGoogle Scholar
  45. “Microreactor flow synthesis of the secondary high explosive 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105)” N. B. Zuckerman, M. Shusteff, P. F. Pagoria, A. E. Gash Journal of Flow Chemistry 2015, 5, 178–182CrossRefGoogle Scholar
  46. “Moffat–Swern oxidation of alcohols: translating a batch reaction to a continuous-flow reaction” O. Bleie, M. F. Roberto, T. I. Dearing, C. W. Branham, O. M. Kvalheim, B. J. Marquardt Journal of Flow Chemistry 2015, 5, 183–189CrossRefGoogle Scholar
  47. “Continuous processing of active pharmaceutical ingredients suspensions via dynamic cross-flow filtration” J. Gursch, R. Hohl, G. Toschkoff, D. Dujmovic, J. Brozio, M. Krumme, J. Khinast Journal of Pharmaceutical Sciences 2015, 104, 3481–3489CrossRefGoogle Scholar
  48. “Continuous flow synthesis of poly (methyl methacrylate) via a light-mediated controlled radical polymerization” A. Melker, B. P. Fors, C. J. Hawker, J. E. Poelma Journal of Polymer Science Part A: Polymer Chemistry 2015, 53, 2693–2698CrossRefGoogle Scholar
  49. “LoMA-B: a simple and versatile lab-on-a-chip system based on single-channel bisulfate conversion for DNA methylation analysis” J. Yoon, M. K. Park, T. Y. Lee, Y. J. Yoon, Y. Shin Lab on a Chip 2015, 15, 3530–3539CrossRefGoogle Scholar
  50. “Continuous microwave flow synthesis (CMFS) of nanosized titania: structural, optical and photocatalytic properties” M. Akram, F. K. Butt, A. Z. Alshemary, Y.-F. Goh, W. A. W. Ibrahim, R. Hussain Materials Letters 2015, 158, 95–98CrossRefGoogle Scholar
  51. “Continuous microwave flow synthesis of mesoporous hydroxyapatite” M. Akram, A. Z. Alshemary, Y.-F. Goh, W. A. W. Ibrahim, H. O. Lintang, R. Hussain Materials Science and Engineering: C 2015, 56, 356–362CrossRefGoogle Scholar
  52. “Copper-catalysed azide–alkyne cycloadditions (CuAAC): an update” E. Haldón, M. C. Nicasio, P. J. Pérez Organic & Biomolecular Chemistry 2015, 13, 9528–9550CrossRefGoogle Scholar
  53. “Visible-light photoredox catalysis: direct synthesis of fused ß-carbolines through an oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade in batch and flow microreactors” D. Chandrasekhar, S. Borra, J. S. Kapure, G. S. Shivaji, G. Srinivasulu, R. A. Maurya Organic Chemistry Frontiers 2015, 2, 1308–1312CrossRefGoogle Scholar
  54. “Generation and ring opening of aziridines in telescoped continuous flow processes” N. Hsueh, G. J. Clarkson, M. Shipman Organic Letters 2015, 17, 3632–3635CrossRefGoogle Scholar
  55. “Homogeneous gold-catalyzed glycosylations in continuous flow” S. Matthies, D. T. McQuade, P. H. Seeberger Organic Letters 2015, 17, 3670–3673CrossRefGoogle Scholar
  56. “Domino hydrogenation–reductive amination of phenols, a simple process to access substituted cyclohexylamines” V. R. Jumde, E. Petricci, C. Petrucci, N. Santillo, M. Taddei, L. Vaccaro Organic Letters 2015, 17, 3990–3993CrossRefGoogle Scholar
  57. “Intensified co-oligomerization of propylene oxide and carbon dioxide in a continuous heat exchanger loop reactor at elevated pressures” J. Langanke, A. Wolf Organic Process Research & Development 2015, 19, 735–739CrossRefGoogle Scholar
  58. “Continuous-flow synthesis of meta-substituted phenol derivatives” J. H. Park, C. Y. Park, M. J. Kim, M. U. Kim, Y. J. Kim, G.-H. Kim, C. P. Park Organic Process Research & Development 2015, 19, 812–818CrossRefGoogle Scholar
  59. “Investigating scale-up and further applications of DABAL-Me3 promoted amide synthesis” D. S. Lee, Z. Amara, M. Poliakoff, T. Harman, G. Reid, B. Rhodes, S. Brough, T. McInally, S. Woodward Organic Process Research & Development 2015, 19, 831–840CrossRefGoogle Scholar
  60. “PTFE-membrane flow reactor for aerobic oxidation reactions and its application to alcohol oxidation” J. F. Greene, Y. Preger, S. S. Stahl, T. W. Root Organic Process Research & Development 2015, 19, 858–864CrossRefGoogle Scholar
  61. “Exceptionally stable and efficient solid supported Hoveyda-type catalyst” K. Skowerski, J. Pastva, S. J. Czarnocki, J. Janoscova Organic Process Research & Development 2015, 19, 872–877CrossRefGoogle Scholar
  62. “Continuous-flow process for the synthesis of 2-ethylphenylhydrazine hydrochloride” Z. Yu, G. Tong, X. Xie, P. Zhou, Y. Lv, W. Su Organic Process Research & Development 2015, 19, 892–896CrossRefGoogle Scholar
  63. “Development of a continuous flow sulfoxide imidation protocol using azide sources under superacidic conditions” B. Gutmann, P. Elsner, A. O’Kearney-McMullan, W. Goundry, D. M. Roberge, C. O. Kappe Organic Process Research & Development 2015, 19, 1062–1067CrossRefGoogle Scholar
  64. “Continuous-flow nitration of o-xylene: effect of nitrating agent and feasibility of tubular reactors for scale-up” Y. Sharma, R. A. Joshi, A. A. Kulkarni Organic Process Research & Development 2015, 19, 1138–1147CrossRefGoogle Scholar
  65. “Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization” T. McGlone, N. E. B. Briggs, C. A. Clark, C. J. Brown, J. Sefcik, A. J. Florence Organic Process Research & Development 2015, 19, 1186–1202CrossRefGoogle Scholar
  66. “Development of pilot-scale continuous production of an LY2886721 starting material by packed-bed hydrogenolysis” N. Zaborenko, R. J. Linder, T. M. Braden, B. M. Campbell, M. M. Hansen, M. D. Johnson Organic Process Research & Development 2015, 19, 1231–1243CrossRefGoogle Scholar
  67. “Polymerization of vinyl ethers initiated by dendritic cations using flow microreactors” A. Nagaki, M. Takumi, Y. Tani, and Jun-ichi Yoshida Tetrahedron, 2015, 71, 5973–5978CrossRefGoogle Scholar
  68. “Study for diastereoselective aldol reaction in flow: synthesis of (E)-(S)-3-hydroxy-7-tritylthio-4-heptenoic acid, a key component of cyclodepsipeptide HDAC inhibitors” T. Doi, H. Otaka, K. Umeda, M. Yoshida Tetrahedron 2015, 71, 6463–6470CrossRefGoogle Scholar
  69. “Continuous flow reactions in water for the synthesis of propargylamines via a metal-free decarboxylative coupling reaction” B. Jung, K. Park, K. H. Song, S. Lee Tetrahedron Letters 2015, 56, 4697–4700CrossRefGoogle Scholar
  70. “Pyrolysis of cyclopentadienone: mechanistic insights from a direct measurement of product branching ratios” T. K. Ormond, A. M. Scheer, M. R. Nimlos, D. J. Robichaud, T. P. Troy, M. Ahmed, J. W. Daily, T. L. Nguyen, J. F. Stanton, G. B. Ellison The Journal of Physical Chemistry A 2015, 119, 7222–7234CrossRefGoogle Scholar
  71. “Experimental and modeling investigation of the low-temperature oxidation of dimethyl ether” A. Rodriguez, O. Frottier, O. Herbinet, R. Fournet, R. Bounaceur, C. Fittschen, F. Battin-Leclerc The Journal of Physical Chemistry A 2015, 119, 7905–7923CrossRefGoogle Scholar
  72. “Influence of He and Ar flow rates and NaCl concentration on the size distribution of bubbles generated by power ultrasound” R. Pflieger, J. Lee, S. I. Nikitenko, M. Ashokkumar The Journal of Physical Chemistry B 2015, 119, 12682–12688CrossRefGoogle Scholar
  73. “Impact of deactivation phenomena on kinetics of the C–N coupling reaction over supported Cu2O catalysts in continuous-flow conditions” B. Jurca, A. Tirsoaga, P. Granger, V. I. Parvulescu The Journal of Physical Chemistry C 2015, 119, 18422–18433CrossRefGoogle Scholar
  74. “Continuous and discontinuous dynamic crossover in supercooled water in computer simulations” Z. Ma, J. Li, F. Wang The Journal of Physical Chemistry Letters 2015, 6, 3170–3174CrossRefGoogle Scholar
  75. “The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor” B. Palanisamy, B. Paul, C.-h. Chang Ultrasonics Sonochemistry 2015, 26, 452–460CrossRefGoogle Scholar


  1. “MnOx nanoparticle-dispersed CeO2 nanocubes: a remarkable heteronanostructured system with unusual structural characteristics and superior catalytic performance” S. Putla, M. H. Amin, B. M. Reddy, A. Nafady, K. A. A. Farhan, S. K. Bhargava ACS Applied Materials & Interfaces 2015, 7, 16525–16535CrossRefGoogle Scholar
  2. “Interference-free micro/nanoparticle cell engineering by use of high-throughput microfluidic separation” D. C. Yeo, C. Wiraja, Y. Zhou, H. M. Tay, C. Xu, H. W. Hou ACS Applied Materials & Interfaces 2015, 7, 20855–20864CrossRefGoogle Scholar
  3. “Flow effects on the controlled growth of nanostructured networks at microcapillary walls for applications in continuous flow reactions” G. Wang, C. Yuan, B. Fu, L. He, E. Reichmanis, H. Wang, Q. Zhang, Y. Li ACS Applied Materials & Interfaces 2015, 7, 21580–21588CrossRefGoogle Scholar
  4. “Strong carbon nanotube fibers by drawing inspiration from polymer fiber spinning” B. Alemán, V. Reguero, B. Mas, J. J. Vilatela ACS Nano 2015, 9, 7392–7398CrossRefGoogle Scholar
  5. “Synthesis of nickel nanoparticles by aqueous reduction in continuous flow microreactor” L. Xu, C. Srinivasakannan, J. Peng, D. Zhang, G. Chen Chemical Engineering and Processing: Process Intensification 2015, 93, 44–49CrossRefGoogle Scholar
  6. “Oscillatory microprocessor for growth and in situ characterization of semiconductor nanocrystals” M. Abolhasani, C. W. Coley, L. Xie, O. Chen, M. G. Bawendi, K. F. Jensen Chemistry of Materials 2015, 27, 6131–6138CrossRefGoogle Scholar
  7. “Effect of seed age on gold nanorod formation: a microfluidic, real-time investigation” J. Watt, B. G. Hance, R. S. Anderson, D. L. Huber Chemistry of Materials 2015, 27, 6442–6449CrossRefGoogle Scholar
  8. “Hydrothermal synthesis and in situ powder X-ray diffraction study of bismuth-substituted ceria nanoparticles” K. Houlberg, E. D. Bøjesen, C. Tyrsted, A. Mamakhel, X. Wang, R. Su, F. Besenbacher, B. B. Iversen Crystal Growth & Design 2015, 15, 3628–3636CrossRefGoogle Scholar
  9. “Highly oxidized multifunctional organic compounds observed in tropospheric particles: a field and laboratory study” A. Mutzel, L. Poulain, T. Berndt, Y. Iinuma, M. Rodigast, O. Bóge, S. Richters, Spindler, M. Sipilá, T. Jokinen, M. Kulmala, H. Herrmann Environmental Science & Technology 2015, 49, 7754–7761CrossRefGoogle Scholar
  10. “Phosphate detection through a cost-effective carbon black nanoparticle-modified screen-printed electrode embedded in a continuous flow system” D. Talarico, S. Cinti, F. Arduini, A. Amine, D. Moscone, G. Palleschi Environmental Science & Technology 2015, 49, 7934–7939CrossRefGoogle Scholar
  11. “An ultrahigh precision, high-frequency dissolved inorganic carbon analyzer based on dual isotope dilution and cavity ring-down spectroscopy” K. Huang, N. Cassar, B. Jonsson, W.-j. Cai, M. L. Bender Environmental Science & Technology 2015, 49, 8602–8610CrossRefGoogle Scholar
  12. “Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2” S. A. Patil, J. B. A. Arends, I. Vanwonterghem, J. V. Meerbergen, K. Guo, G. W. Tyson, K. Rabaey Environmental Science & Technology 2015, 49, 8833–8843CrossRefGoogle Scholar
  13. “A direct and continuous supercritical water process for the synthesis of surface-functionalized nanoparticles” R. I. Gruar, C. J. Tighe, P. Southern, Q. A. Pankhurst, J. A. Darr Industrial & Engineering Chemistry Research 2015, 54, 7436–7451CrossRefGoogle Scholar
  14. “Development of a dual-stage continuous flow reactor for hydrothermal synthesis of hybrid nanoparticles” H. L. Hellstern, J. Becker, P. Hald, M. Bremholm, Mamakhel, B. B. Iversen Industrial & Engineering Chemistry Research 2015, 54, 8500–8508CrossRefGoogle Scholar
  15. “Structural and optical characterization of CuInS2 quantum dots synthesized by microwave-assisted continuous flow methods” R. C. Fitzmorris, R. P. Oleksak, Z. Zhou, B. D. Mangum, J. N. Kurtin, G. S. Herman Journal of Nanoparticle Research 2015, 17, 1–10CrossRefGoogle Scholar
  16. “Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher” S. Elbasuney, S. F. Mostafa Powder Technology 2015, 278, 72–83CrossRefGoogle Scholar


  1. “Machine-assisted organic synthesis” S. V. Ley, D. E. Fitzpatrick, Myers, C. Battilocchio, R. Ingham Angewandte Chemie International Edition 2015, 54, 10122–10136CrossRefGoogle Scholar
  2. “The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry” M. Baumann, I. R. Baxendale Beilstein Journal of Organic Chemistry 2015, 11, 1194–1219CrossRefGoogle Scholar
  3. “Nanocatalysis in flow” R. Ricciardi, J. Huskens, W. Verboom ChemSusChem 2015, 8, 2586–2605CrossRefGoogle Scholar
  4. “Photochemistry in flow” A. B. Beeler, S. R. Corning Photochemistry 2015, 43, 175Google Scholar
  5. “Recent trends in using single-drop microextraction and related techniques in green analytical methods” J. M. Kokosa TrAC Trends in Analytical Chemistry 2015, 71, 194–204CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  1. 1.Chem Eng. & Proc. Dev. DivisionCSIR National Chemical LaboratoryPuneIndia

Personalised recommendations