Skip to main content

Characterization of Microchannel Hemodialyzers Using Residence Time Distribution Analysis

Abstract

Microchannel-based hemodialysis has a potential to improve survival rates and quality of life for end-stage renal disease patients compared to conventional hemodialysis technology. Characterization of hydrodynamic behavior in microchannel geometries is necessary for improving flow uniformity, a critical challenge in realizing a commercial device. A test loop was developed for measuring the impulse response of a tracer dye injected into a dialyzer test article for the purpose of developing residence time distributions (RTD) to characterize lamina design. RTD variance tended to lower for designs that are more dominated, volume-wise, by the microchannel array versus the headers. RTD results also emphasize how defect issues can significantly impact a microchannel device via discrepancies between conceptual and operational devices. A multisegmented CFD model, developed for pairing with the impulse response test loop and dialyzer, showed good agreement between visual observation of the tracer in simulations and experiments, and the shape and peak of the output profiles.

References

  1. U.S. Renal Data System, USRDS 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States; National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, 2013.

    Google Scholar 

  2. Tuhy, A. R.; Anderson, E. K.; Jovanovic, G. N. Microdevice 2012, 14, 595–602.

    CAS  Article  Google Scholar 

  3. Lockridge, R. S.; Anderson, H. K.; Coffey, L. T.; Craft, V. W.; Jennings, F. M.; McPhatter, L. L.; Spencer, M. O., Swafford, A. C. Semin. Dial. 1999, 12, 440–447.

    Article  Google Scholar 

  4. Pierratos, A. Nephrol. Dial. Transplant. 1999, 14, 2835–2840.

    CAS  Article  Google Scholar 

  5. Tonkovich, A.; Kuhlmann, D.; Rogers, A.; McDaniel, J.; Fitzgerald, S.; Arora, R.; Yuschak, T. Chem. Eng. Res. Des. 2005, 83, 634–639.

    CAS  Article  Google Scholar 

  6. Litterst, C.; Metz, T.; Zengerle, R.; Koltay, P. Microfluid. Nanofluid. 2008, 5, 775–784.

    CAS  Article  Google Scholar 

  7. Skelley, A. M.; Voldman, J. Lab. Chip. 2008, 8, 1733–1737.

    CAS  Article  Google Scholar 

  8. Xu, J.; Vaillant, R.; Attinger, D. Microfluid. Nanofluid. 2010, 9, 765–772.

    CAS  Article  Google Scholar 

  9. Clime, L.; Brassard, D.; Pezacki, J. P.; Veres, T. Microfluid. Nanofluid. 2011, 12, 371–382.

    Article  Google Scholar 

  10. Lochovsky, C.; Yasotharan, S.; Günther, A. Lab. Chip. 2012, 12, 595–601.

    CAS  Article  Google Scholar 

  11. Mohammadi, M.; Sharp, K. V. J. Fluids. Eng. 2015, 137, 031208.

  12. Paul, B. K.; Porter, S. D. J. Manuf. Process. 2014, 16, 535–542.

    Article  Google Scholar 

  13. Nauman, E. B. Ind. Eng. Chem. Res. 2008, 47, 3752–3766.

    CAS  Article  Google Scholar 

  14. Levenspiel, O. Tracer Technology: Modeling the Flow of Fluids; Springer-Verlag New York: New York, 2011.

    Google Scholar 

  15. Trachsel, F., Günther, A.; Khan, S.; Jensen, K. F. Chem. Eng. Sci. 2005, 60, 5729–5737.

    CAS  Article  Google Scholar 

  16. Cantu-Perez, A.; Barrass, S.; Gavriilidis, A. Chem. Eng. J. 2010, 160, 834–844.

    CAS  Article  Google Scholar 

  17. Cantu-Perez, A.; Bi, S.; Barrass, S.; Wood, M.; Gavriilidis, A. Appl. Therm. Eng. 2011, 31, 634–639.

    CAS  Article  Google Scholar 

  18. Georget, E.; Sauvageat, J. L.; Burbidge, A.; Mathys, A. J. Food Eng. 2013, 116, 910–919.

    CAS  Article  Google Scholar 

  19. Boskovic, D.; Loebbecke, S. Chem. Eng. J. 2008, 135, Supplement 1, S138–S146.

    CAS  Article  Google Scholar 

  20. Boskovic, D.; Loebbecke, S.; Gross, G. A.; Koehler, J. M. Chem. Eng. Technol. 2011, 34, 361–370.

    CAS  Article  Google Scholar 

  21. Adeosun, J. T.; Lawal, A. Chem. Eng. Sci. 2009, 64, 2422–2432.

    CAS  Article  Google Scholar 

  22. Adeosun, J. T.; Lawal, A. Sens. Actuators B Chem. 2009, 139, 637–647.

    CAS  Article  Google Scholar 

  23. Méndez-Portillo, L. S.; Heniche, M.; Dubois, C.; Tanguy, P. A. J. AIChE. 2013, 59, 988–1001.

    Article  Google Scholar 

  24. Levenspiel, O. Chemical Reaction Engineering, edition 3. New York: Wiley 1998.

    Google Scholar 

  25. Kasban, H.; Zahran, O.; Arafa, H.; El-kordy, M.; Elaraby, S.; El-Samie, F. E. A. In 2010 The 7th International Conference on Informatics and Systems (INFOS), 2010; pp. 1–8.

    Google Scholar 

  26. Jansson, P. A. Deconvolution: With Applications in Spectroscopy; Academic: Cambridge, 1984.

    Google Scholar 

  27. Jansson, P. A.; Hunt, R. H.; Plyler, E. K. J. Opt. Soc. Am. 1970, 60, 596–599.

    CAS  Article  Google Scholar 

  28. Ham, J.-H.; Platzer, B. Chem. Eng. Technol. 2004, 27, 1172–1178.

    CAS  Article  Google Scholar 

  29. Shilapuram, V.; Jaya Krishna, D.; Ozalp, N. Int. J. Hydrog. Energy 2011, 36, 13488–13500.

    CAS  Article  Google Scholar 

  30. Mohammadi, M.; Jovanovic, G. N.; Sharp, K. V. Comput. Chem. Eng. 2013, 52, 134–144.

    CAS  Article  Google Scholar 

  31. Manikanda Kumaran, R.; Kumaraguruparan, G.; Sornakumar, T. Appl. Therm. Eng. 2013, 58, 205–216.

    Article  Google Scholar 

  32. Coblyn, M.; Truszkowska, A.; Mohammadi, M.; Heintz, K.; McGuire, J.; Sharp, K.; Jovanovic, G. J. Biomed. Mater. Res., Part B [Online early access]. DOI: 10.1002/jbm.b.33440. Published Online: May 13, 2015. http://onlineli-brary.wiley.com/doi/10.1002/jbm.b.33440/full (accessed Feb 25, 2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Jovanovic.

Electronic supplementary material

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coblyn, M., Truszkowska, A. & Jovanovic, G. Characterization of Microchannel Hemodialyzers Using Residence Time Distribution Analysis. J Flow Chem 6, 53–61 (2016). https://doi.org/10.1556/1846.2015.00041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/1846.2015.00041

Keyword

  • microchannel
  • micropost
  • hydrodynamic behavior
  • residence time distribution
  • hemodialysis