Skip to main content

Application of Enzyme-Immobilization Technique for Microflow Reactor

Abstract

The microreaction technology which is an interdisciplinary science and engineering, have attracted attention in many fields in the past years. Several microreactors have been developed. Enzyme is one of the catalysts, which is useful in substance production in an environmentally friendly way, and has high potential for the preparation of chiral compounds. These features are suitable for pharmaceutical process. However, not so many enzymatic processes were commercialized, because of problems in stability of enzyme molecule, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering particularly for enzymatic reactions, and microreaction devices can be a strong tool for the development of enzyme processes. In this minireview, we summarize fundamental immobilization techniques to develop enzyme microreactor. Some important applications of this technology toward the chemical processing are also included.

Abbreviations

AChE:

acetylcholinesterase

CAPE:

caffeic acid phenethyl ester

Cam:

carboxamidomethyl

CLEA:

cross-linked enzyme aggregate

L-DOPA:

L-3,4-dihydroxyphenylalanine

GO:

graphene oxide

LTCC:

low temperature cofired ceramics

NPs:

nanoparticles

Ni-NTA:

nickel ion-coordinated nitrilotriacetic acid

PDMS:

polydimethylsiloxane

PEI:

polyethyleneimine

PEEK:

polyether ether ketone

PMMA:

polymethyl methacrylate

PVA:

polyvinyl alcohol

Tfe:

trifluoroethyl

References

  1. Ehrfeld, W.; Hessel, V.; Lowe, H. Microreactors-New Technology for Modern Chemistry; Wiley-VCH, Weinheim, Germany, 2000.

    Google Scholar 

  2. Székely, L.; Guttman, A. Electrophoresis 2005, 26 4590–4604.

    Article  Google Scholar 

  3. Ziaie, B.; Baldia, A.; Leia, M.; Guc, Y.; Siegelb, R. A. Adv. DrugDelivery Rev. 2004, 56, 145–172.

    CAS  Article  Google Scholar 

  4. Hessel, V.; Hardt, S.; Lowe, H. Chemical Micro Process Engineering. Wiley-VCH, Weinheim, Germany, 2004.

    Book  Google Scholar 

  5. Watts, P.; Haswell, S. J. Chem. Soc. Rev. 2005, 34, 235–246.

    CAS  Article  Google Scholar 

  6. Chovân, T.; Guttman, A. Trends Biotechnol. 2002, 20, 116–122.

    Article  Google Scholar 

  7. Andersson, H.; van den Berg, A. Sens. Actuators. B 2003, 92, 315–325.

    CAS  Article  Google Scholar 

  8. Cullen, C. J.; Wootton, R. C.; De Mello, A. J. Curr. Opin. DrugDiscovery Dev. 2004, 7, 798–806.

    CAS  Google Scholar 

  9. Wirth, T. Microreactor in Organic Chemistry and Catalysis, 2nd edn.; Wiley-VCH, Weinheim, 2013.

    Book  Google Scholar 

  10. Miyazaki, M.; Maeda, H. Trends Biotechnol. 2006, 24, 463–470.

    CAS  Article  Google Scholar 

  11. Schoemaker, H. E.; Mink, D.; Wubbolts, M. G. Science 2003, 299, 1694–1697.

    Article  Google Scholar 

  12. Garda-Junceda, E.; Garcia-Garcia, J. F.; Bastida, A.; Fernândez-Mayoralas, A. Bioorg. Med. Chem. 2004, 12, 1817–1834.

    Article  Google Scholar 

  13. Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Nature 2001, 409, 258–268.

    CAS  Article  Google Scholar 

  14. Wohlgemuth, R.; Plazl, I.; Znidarsic-Plazl, P.; Gernaey, K.; Woodley, J. Trends Biotechnol. 2015, 33, 302–315.

    CAS  Article  Google Scholar 

  15. Richter, T.; Shultz-Lockyear, L. L.; Oleschuk, R. D.; Bilitewski, U.; Harrison, D. J. Sens Actuators, B 2002, 81, 369–376.

    CAS  Article  Google Scholar 

  16. Seong, G. H.; Crooks, R. M. J. Am. Chem. Soc. 2002,124, 13360–13361.

    CAS  Article  Google Scholar 

  17. Srinivasan, A.; Bach, H.; Sherman, D. H.; Dordick, J. S. Biotechnol. Bioeng. 2004, 88, 528–535.

    CAS  Article  Google Scholar 

  18. Drager, G.; Kiss, C.; Kunz, U.; Kirschning, A. Org. Biomol. Chem. 2007, 5, 3657–3664.

    Google Scholar 

  19. Nomura, A.; Shin, S.; Mehdi, O. O.; Kaufmann, J.-M. Anal. Chem. 2004, 76, 5498–5502.

    CAS  Article  Google Scholar 

  20. Li, Y.; Xu, X.; Yan, B.; Deng, C.; Yu, W.; Yang, P.; Zhang, X. J. Proteome Res. 2007, 6, 2367–2375.

    CAS  Article  Google Scholar 

  21. Baeza, M.; López, C.; Alonso, J.; López-Santin, J.; Alvaro, G. Anal. Chem. 2010, 82, 1006–1011.

    CAS  Article  Google Scholar 

  22. Sakai-Kato, K.; Kato, M.; Toyo’oka, T. Anal. Chem. 2003, 75, 388–393.

    CAS  Article  Google Scholar 

  23. Sakai-Kato, K.; Kato, M.; Ishihara, K.; Toyo’oka, T. Lab Chip 2004, 4, 4–6.

    CAS  Article  Google Scholar 

  24. Kawakami, K.; Sera, Y.; Sakai, S.; Ono, T.; Ijima, H. Ind. Eng. Chem. Res. 2005, 44, 236–240.

    CAS  Article  Google Scholar 

  25. Koh, W.-G.; Pishko, M. Sens. Actuators. B 2005, 106, 335–342.

    CAS  Article  Google Scholar 

  26. Jeong, W. J.; Kim, J. Y.; Choo, J.; Lee, E. K.; Han, C. S.; Beebe, D. J.; Seong, G. H.; Lee, S. H. Langmuir 2005, 21, 3738–3741.

    CAS  Article  Google Scholar 

  27. Lozinsky, V. I. Russ. Chem. Bull. 2008, 57, 1015–1032.

    CAS  Article  Google Scholar 

  28. Nakagawa, K.; Tamura, A.; Chaiya, C. Chem. Eng. Sci. 2014,119, 22–29.

    CAS  Article  Google Scholar 

  29. Nakagawa, K.; Goto, Y. Chem. Eng. Process. 2015, 91, 35–42.

    CAS  Article  Google Scholar 

  30. He, P.; Greenway, G.; Haswell, S. J. Microfluid. Nanofluid. 2010, 8, 565–573.

    CAS  Article  Google Scholar 

  31. Miyazaki, M.; Kaneno, J.; Uehara, M.; Fujii, M.; Shimizu, H.; Maeda, H. Chem. Commun. 2003, 648–649.

    Google Scholar 

  32. Kaneno, J.; Kohama, R.; Miyazaki, M.; Uehara, M.; Kanno, K.; Fujii, M.; Shimizu, H.; Maeda, H. New J. Chem. 2003, 27, 1765–1768.

    CAS  Article  Google Scholar 

  33. Miyazaki, M.; Kaneno, J.; Kohama, R.; Uehara, M.; Kanno, K.; Fujii, M.; Shimizu, H.; Maeda, H. Chem. Eng. J. 2004, 101, 277–284.

    CAS  Article  Google Scholar 

  34. Miyazaki, M.; Kaneno, J.; Yamaori, S.; Honda, T.; Briones, M. P. P.; Uehara, M.; Arima; K.; Kanno, K.; Yamashita, K.; Yamaguchi, Y.; Nakamura, H.; Yonezawa, H.; Fujii, M.; Maeda, H. Protein Pept. Lett. 2005, 12, 207–210.

    CAS  Article  Google Scholar 

  35. Gao, J.; Xu, J.; Locascio, L. E.; Lee, C. S. Anal. Chem. 2001, 73, 2648–2655.

    CAS  Article  Google Scholar 

  36. Hisamoto, H.; Shimizu, Y.; Uchiyama, K.; Tokeshi, M.; Kikutani, Y.; Hibara, A.; Kitamori, T. Anal. Chem. 2003, 75, 350–354.

    CAS  Article  Google Scholar 

  37. Honda, T.; Miyazaki, M.; Nakamura, H.; Maeda, H. Chem. Commun. 2005, 5062–5064.

    Google Scholar 

  38. Sheldon, R. A. Appl. Microbiol. Biotechnol. 2011, 92, 467–477.

    CAS  Article  Google Scholar 

  39. Honda, T.; Miyazaki, M.; Nakamura, H.; Maeda, H. Adv. Synth. Catal. 2006, 348, 2163–2171.

    CAS  Article  Google Scholar 

  40. Cao, L.; Schmid, R. D. Carrier-Bound Immobilized Enzymes: Principles, Applications and Design, Weinheim, Wiley-VCH Verlag GmbH, 2005.

    Book  Google Scholar 

  41. Liang, R.-P.; Wang, X.-N.; Liu, C.-M.; Meng, X.-Y.; Qiu, J. D. J. Chromatogr. A 2013, 1315, 28–35.

    CAS  Article  Google Scholar 

  42. Elleuche, S.; Schröder, C.; Sahm, K.; Antranikian, G. Curr. Opin. Biotechnol. 2014, 29, 116–123.

    CAS  Article  Google Scholar 

  43. Sheldon, R. A. Adv. Synth. Catal. 2007, 349, 1289–1307.

    CAS  Article  Google Scholar 

  44. Steffansen, B.; Nielsen, C. U.; Frokjaer, S. Eur. J. Pharm. Biopharm. 2005, 60, 241–245.

    CAS  Article  Google Scholar 

  45. Nuijens, T.; Cusan, C.; Schepers, C.H.M.; Kruijtzer, J. A. W.; Rijkers, D. T. S.; Liskamp, R. M. J.; Quaedflieg, P. J. L. M. J. Mol. Catal. B: Enzym. 2011, 71, 79–84.

    CAS  Article  Google Scholar 

  46. Xu, D. Y.; Chen, J. Y.; Yang, Z. Biochem. Eng. J. 2011, 63, 88–94.

    Article  Google Scholar 

  47. Truppo, M. D.; Hughes, G. Org Process Res Dev 2011, 15, 1033–1035.

    CAS  Article  Google Scholar 

  48. Li, Q.; Fan, F.; Wang, Y.; Feng, W.; Ji, P. Ind. Eng. Chem. Res. 2013, 52, 6343–6348.

    CAS  Article  Google Scholar 

  49. Zhang, F.; Zheng, B.; Zhang, J.; Huang, X.; Liu, H.; Gou, S.; Zhang, J. J. Phys. Chem. C 2010, 114, 8469–8473.

    CAS  Article  Google Scholar 

  50. Fernando, B. L.; Morales, G.; Sanz, R. Bioresour. Technol. 2010, 101, 8541–8548.

    Article  Google Scholar 

  51. Lloret, L.; Eibes, G.; Moreira, M. T.; Feijoo, G.; Lema, J. M.; Miyazaki, M. Chem. Eng. J. 2013, 223, 497–506.

    CAS  Article  Google Scholar 

  52. Chena, H. C.; Chenb, J. H.; Changc, C.; Shieh, C. J. Ultrason. Sonochem. 2011, 18, 455–459.

    Article  Google Scholar 

  53. Wang, J.; Gu, S. S.; Cui, H. S.; Wu, X. Y.; Wu, F. A. Bioresour. Technol. 2014, 158, 39–47.

    CAS  Article  Google Scholar 

  54. Kundu, S.; Bhangale, A. S.; Wallace, W. E.; Flynn, K. M. et al. J. Am. Chem. Soc. 2011, 133, 6006–6011.

    CAS  Article  Google Scholar 

  55. Boehm, C. R.; Freemont, P. S.; Ces, O. Lab Chip 2013, 13, 3426–3432.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Miyazaki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, H., Honda, T. & Miyazaki, M. Application of Enzyme-Immobilization Technique for Microflow Reactor. J Flow Chem 6, 13–17 (2016). https://doi.org/10.1556/1846.2015.00039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/1846.2015.00039

Keyword

  • microreactor
  • enzyme
  • immobilization
  • biotransformation