Skip to main content

Continuous Lipase B-Catalyzed Isoamyl Acetate Synthesis in a Two-Liquid Phase System Using Corning® AFR™ Module Coupled with a Membrane Separator Enabling Biocatalyst Recycle

Abstract

The performance of the Corning AFR™ Low Flow (LF) fluidic module for Candida antarctica lipase B-catalyzed isoamyl acetate synthesis in an n-heptane–buffer two-liquid phase system was evaluated. Obtained flow regime of dispersed n-heptane droplets in a continuous buffer phase, which enables in situ extraction of the produced isoamyl acetate to the n-heptane phase, provides a very large interfacial area for the esterification catalyzed by an amphiphilic lipase B, which positions itself on the n-heptane–buffer interface. Productivities obtained were the highest reported so far for this reaction and indicate that Corning Advanced-Flow Reactor™ (AFR™) modules are also very efficient for carrying out biotransformations in two-phase systems. Additionally, for the separation of the n-heptane from the aqueous phase, a membrane separator consisting of a hydrophobic PTFE membrane was integrated, which enabled the reuse of biocatalyst in several consecutive biotransformations.

References

  1. Bomscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz S.; Moore, J. C.; Robins K. Nature 2013, 485, 186–195.

    Google Scholar 

  2. Pollard, D. J.; Woodley, J. M. Trends Biotechnol. 2006, 25, 66–73.

    Article  Google Scholar 

  3. Leffingwell and Associates, “Flavor & Fragrance Industry Leaders,” http://www.leflingwell.com/top_10.htm; estimate as of March 17, 2015.

  4. Torres, S.; Baigori, M. D.; Swathy, S.L; Pandey, A.; Castro, G. R. Food Res. Int. 2009, 42, 454–460.

    CAS  Article  Google Scholar 

  5. Torres, S.; Pandey, A.; Castro, G. R. Banana Flavor: Insights into Isoamyl Acetate Production. In Bananas: Nutrition, Diseases and Trade Issues, Alisha, E., Ed.; Nova Science Publishers: New York, 2010; pp. 225–244.

    Google Scholar 

  6. Welsh, F. W.; Williams, R. E.; Dawson, K. H. J. Food Sci. 1990, 55, 1679–1682.

    CAS  Article  Google Scholar 

  7. Hasan, F.; Ali Shah, A.; Hameed A. Enzyme Microb. Technol. 2010, 39, 235–251.

    Article  Google Scholar 

  8. Krings, U.; Berger, R. G. Appl. Microbiol. Biotechnol. 1998, 49, 1–8.

    CAS  Article  Google Scholar 

  9. Yusoff Azudin, N.; Mashitah, M. D.; Abd Shukor, S. R. C. J. Food Quality 2013, 36, 441–446.

    Article  Google Scholar 

  10. Cvjetko, M.; Vorkapic-Furac, J.; Znidarsic-Plazl, P. Process Biochem. 2012, 47, 1344–1350.

    CAS  Article  Google Scholar 

  11. Romero, M. D.; Calvo, L.; Alba, C.; Daneshfar, A. J. Biotechnol. 2007, 127, 269–277.

    CAS  Article  Google Scholar 

  12. Durand, E.; Lecomte, J.; Barea, B.; Piombo, G.; Dubreucq, E.; Villeneuve, P. Process Biochem. 2012, 47, 2081–2089.

    CAS  Article  Google Scholar 

  13. Pohar, A.; Plazl, I.; Znidarsic-Plazl, P. Lab Chip 2009, 9, 3385–3390.

    CAS  Article  Google Scholar 

  14. Hernandez, F. J.; de los Rios, A. P.; Gomez, D.; Rubio, M.; Villora G. Appl. Catal. B: Environmental 2006, 67, 121–126.

    CAS  Article  Google Scholar 

  15. Eisenmenger, M. J.; Reyes-De-Corcuera, J. I. J. Mol. Cat. B: Enzym. 2010, 67, 36–40.

    CAS  Article  Google Scholar 

  16. Novak, U.; Znidarsic-Plazl, P. Green Proc. Synth. 2013, 2, 561–568.

    CAS  Google Scholar 

  17. Znidarsic-Plazl, P.; Plazl, I. Process Biochem. 2009, 44, 1115–1121.

    CAS  Article  Google Scholar 

  18. Reis, P.; Holmberg, K.; Watzke, H.; Leser, M. E.; Miller, R. Adv. Colloid Interface Sci. 2009, 147-148, 237–250.

    Google Scholar 

  19. Faber, K. In Biotransformations in Organic Chemistry: A Textbook; Springer-Verlag: Berlin, 2011.

    Book  Google Scholar 

  20. Bolivar, J. M.; Nidetzky, B. Green Proc. Synth. 2013, 2, 541–559.

    CAS  Google Scholar 

  21. Znidarsic-Plazl, P. Chim. Oggi - Chem. Today 2014, 32, 55–61.

    Google Scholar 

  22. Kockmann, N. In Transport Phenomena in Micro Process Engineering, Heat and Mass Transfer; Springer: Berlin, 2007.

    Google Scholar 

  23. Wu, K. J.; Nappo, V.; Kuhn, S. Ind. Eng. Chem. Res. 2015, 54, 7554–7564.

    CAS  Article  Google Scholar 

  24. Saber, M.; Commenge, J. M.; Falk, L. Chem. Eng. Sci. 2010, 65, 372–379.

    CAS  Article  Google Scholar 

  25. Holbach, A.; Caliskan, E.; Lee, H. S.; Kockmann N. Chem. Eng. Process. 2014, 80, 21–28.

    CAS  Article  Google Scholar 

  26. Fernandes, P. Int. J. Mol. Sci. 2010, 11, 858–879.

    CAS  Article  Google Scholar 

  27. Wohlgemuth, R.; Plazl, I.; Znidarsic Plazl, P.; Gernaey, K. V; Woodley, J. M. Trends Biotechnol. 2015, 33, 302–314.

    CAS  Article  Google Scholar 

  28. Bolivar, J. M.; Wiesbauer, J.; Nidetzky, B. Trends Biotechnol. 2011, 29, 333–342.

    CAS  Article  Google Scholar 

  29. Kikutani, Y.; Hibara, A.; Uchiyama, K; Hisamoto, H.; Tokeshi, M.; Kitamori, T. Lab Chip 2002, 2, 193–196.

    CAS  Article  Google Scholar 

  30. Ehrfeld, W.; Hessel V.; Löwe, H. In Microreactors: New Technology for Modern Chemistry; Wiley-VCH: Weinheim, 2000.

    Book  Google Scholar 

  31. Guidat, R.; Lavric, E. D. Multi-scale numbering-up, 21st International Symposium on Chemical Reaction Engineering ISCRE 21, Philadelphia, 13-16 June 2010.

    Google Scholar 

  32. Lavric, E. D.; Woehl, P. Chim. Oggi - Chem. Today 2009, 27, 45–48.

    CAS  Google Scholar 

  33. Chevalier, B.; Lavric, E. D.; Cerato-Noyerie, C.; Horn, C. R.; Woehl P. Chim. Oggi - Chem. Today 2008, 26, 53–56.

    Google Scholar 

  34. Zhang, F.; Cerato-Noyerie, C.; Woehl, P.; Lavric, E. D. Chem. Eng. Transactions 2011, 24, 1369–1374.

    Google Scholar 

  35. Nieves-Remacha, M. J.; Kulkarni, A. A.; Jensen, K. F. Ind. Eng. Chem. Res. 2012, 51, 16251–16262.

    CAS  Article  Google Scholar 

  36. Jovanovic, J.; Rebrov, E. V.; Nijhuis, T. A.; Kreutzer, M. T.; Hessel, V.; Schouten, J. C. Ind. Eng. Chem. Res. 2012, 51, 1015–1026.

    Article  Google Scholar 

  37. Ruiz, M. C.; Lermanda, P.; Padilla, R. Hydrometallurgy 2002, 63, 65–74.

    CAS  Article  Google Scholar 

  38. Perry, R. H.; Green, D. W. In Perry’s Chemical Engineers Handbook, 7th ed.; McGraw-Hill: New York, 1997.

    Google Scholar 

  39. Woitalka, A.; Kuhn, S.; Jensen, K. F. Science 2014, 116, 1–8.

    CAS  Google Scholar 

  40. Güvenc, A.; Kapucu, N.; Mehmetoglu, Ü. Process Biochem. 2002, 38, 379–386.

    Article  Google Scholar 

  41. Romero, M. D.; Calvo, L.; Alba, C.; Daneshfar, A.; Ghaziaskar, H. S. Enzyme Microb. Technol. 2005, 37, 42–48.

    CAS  Article  Google Scholar 

  42. Poojari, Y.; Clarson, S. J. Biocatal. Agric. Biotechnol. 2013, 2, 7–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polona Žnidaršiè-Plazl.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Novak, U., Lavric, D. & Žnidaršiè-Plazl, P. Continuous Lipase B-Catalyzed Isoamyl Acetate Synthesis in a Two-Liquid Phase System Using Corning® AFR™ Module Coupled with a Membrane Separator Enabling Biocatalyst Recycle. J Flow Chem 6, 33–38 (2016). https://doi.org/10.1556/1846.2015.00038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/1846.2015.00038

Keyword

  • microreactor
  • lipase
  • esterification
  • separation
  • droplet flow