Skip to main content

Artificial Fluorogenic Substrates in Microfluidic Devices for Bacterial Diagnostics in Biotechnology

Abstract

Providing new fluorogenic substrates with designed enzyme-labile moieties for microfluidic live cell analysis is an innovative complementary approach to conventional cultivation based methods of bacterial diagnostics. The advance of their integrated application in microfluidic devices is presented in comparison to established approaches. A comprehensive insight on recent implementation is given and highlighted with a commercially available example.

References

  1. Zhao, N.; Darby, C. M.; Small, J.; Bachovchin, D. A.; Jiang, X.; Bums-Huang, K. E.; Botella, H.; Ehrt, S.; Boger, D. L.; Anderson, E. D.; Cravatt, B. F.; Speers, A. E.; Fernandez-Vega, V.; Hodder, P. S.; Eberhart, C.; Rosen, H.; Spicer, T. P.; Nathan, C. F. ACS Chem. Biol. 2015, 10, 364–371.

    CAS  Article  Google Scholar 

  2. Shim, J.; Olguin, L. F.; Whyte, G.; Scott, D.; Babtie, A.; Abell, C.; Huck, W. T. S.; Hollfelder, F. J. Am. Chem. Soc. 2009, 131, 15251–15256.

    CAS  Article  Google Scholar 

  3. Kramer, C.; Singh, A.; Helfrich, S.; Grünberger, A.; Wiechert, W.; Nöh, K.; Kohlheyer, D. PLoS One 2015, 10, e0141768.

    Article  Google Scholar 

  4. Ishiguro, K.; Washio, J.; Sasaki, K.; Takahashi, N. J. Microbiol. Methods 2015, 115, 22–26.

    CAS  Article  Google Scholar 

  5. Hoefel, D.; Grooby, W. L.; Monis, P. T.; Andrews, S.; Saint, C. P. J. Microbiol. Methods 2003, 52, 379–388.

    CAS  Article  Google Scholar 

  6. Lyu, F.; Xu, M.; Cheng, Y.; Xie, J.; Rao, J.; Tang, S. K. Y Biomicrofluidics 2015, 9, 044120.

    Article  Google Scholar 

  7. Lun, S.; Bishai, W. R. J. Biol. Chem. 2007, 282, 18348–18356.

    CAS  Article  Google Scholar 

  8. Tallman, K. R.; Beatty, K. E. Chembiochem 2015, 16, 70–75.

    CAS  Article  Google Scholar 

  9. Akopian, T.; Kandror, O.; Tsu, C.; Lai, J. H.; Wu, W.; Liu, Y.; Zhao, P.; Park, A.; Wolf, L.; Dick, L. R.; Rubin, E. J.; Bachovchin, W.; Goldberg, A. L. J.Biol. Chem. 2015, 290, 11008–11020.

    Article  Google Scholar 

  10. Vorobyeva, A. G.; Stanton, M.; Godinat, A.; Lund, K. B.; Mccormack, E.; Tangney, M.; Dubikovskaya, E. A. PLoS One 2015, 10, e0131037.

    Article  Google Scholar 

  11. Shao, Q.; Zheng, Y.; Dong, X.; Tang, K.; Yan, X.; Xing, B. Chem. Eur. J. 2013, 19, 10903–10910.

    CAS  Article  Google Scholar 

  12. Burke, H. M.; Gunnlaugsson, T.; Scanlan, E. M. Chem. Commun. 2015, 51, 10576–10588.

    CAS  Article  Google Scholar 

  13. Manafi, M.; Kneifel, W.; Bascomb, S. Microbiol. Rev. 1991, 55, 335–348.

    CAS  Google Scholar 

  14. Orenga, S.; James, A. L.; Manafi, M.; Perry, J. D.; Pincus, D. H. J. Microbiol. Methods 2009, 79, 139–155.

    CAS  Article  Google Scholar 

  15. Veal, D. A.; Deere, D.; Ferrari, B.; Piper, J.; Attfield, P. V. J. Immunol. Methods 2000, 243, 191–210.

    CAS  Article  Google Scholar 

  16. Rowland, B. FEMS Microbiol Lett. 1999, 179, 317–325.

    CAS  Article  Google Scholar 

  17. Diaper, J. P.; Edwards, C. J. Appl Bacteriol. 1994, 77, 221–228.

    Article  Google Scholar 

  18. Diaz, M.; Herrero, M.; Garcia, L. A.; Quirós, C. Biochem. Eng. J. 2010, 48, 385–407.

    CAS  Article  Google Scholar 

  19. Najah, M.; Calbrix, R.; Mahendra-Wijaya, I.; Beneyton, T.; Griffiths, A.; Drevelle, A. Chem. Biol. 2014, 21, 1722–1732.

    CAS  Article  Google Scholar 

  20. Hosokawa, M.; Hoshino, Y; Nishikawa, Y; Hirose, T.; Yoon, D. H.; Mori, T.; Sekiguchi, T.; Shoji, S.; Takeyama, H. Biosens. Bioelectron. 2015, 67, 379–385.

    CAS  Article  Google Scholar 

  21. Grünberger, A.; Probst, C.; Helfrich, S.; Nanda, A.; Stute, B.; Wiechert, W.; Lieres, E. von; Nöh, K.; Frunzke, J.; Kohlheyer, D. Cytometry, Part A 2015, doi: 10.1002/cyto.a.22779.

    Google Scholar 

  22. Carlo, D. Di; Aghdam, N.; Lee, L. P. Anal. Chem. 2006, 78, 4925–4930.

    Article  Google Scholar 

  23. Byrd, T. F.; Hoang, L. T.; Kim, E. G.; Pfister, M. E.; Werner, E. M.; Arndt, S. E.; Chamberlain, J. W.; Hughey, J. J.; Nguyen, B. A.; Schneibel, E. J.; Wertz, L. L.; Whitfield, J. S.; Wikswo, J. P.; Seale, K. T. Sci. Rep. 2014, 4, doi: 10.1038/srep05117.

  24. Gengenbacher, M.; Kaufmann, S. H. E. FEMS Microbiol. Rev. 2012, 36, 514–532.

    CAS  Article  Google Scholar 

  25. Shim, J.; Patil, S. N.; Hodgkinson, J. T.; Bowden, S. D.; Spring, D. R.; Welch, M.; Huck, W. T. S.; Hollfelder, F.; Abell, C., J. Lab Chip 2011, 11, 1132–1137.

    CAS  Article  Google Scholar 

  26. Cellier, M.; Fabrega, O. J.; Fazackerley, E.; James, A. L.; Orenga, S.; Perry, J. D.; Salwatura, V. L.; Stanforth, S. P. Bioorganic Med. Chem. Lett. 2015, doi: 10.1016/j.bmcl.2015.10.099.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich Kohlheyer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krämer, C.E.M., Wiechert, W. & Kohlheyer, D. Artificial Fluorogenic Substrates in Microfluidic Devices for Bacterial Diagnostics in Biotechnology. J Flow Chem 6, 3–7 (2016). https://doi.org/10.1556/1846.2015.00035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/1846.2015.00035

Keyword

  • fluorogenic substrate
  • coumarin
  • calcein acetoxymethyl ester
  • enzyme-labile moieties
  • bacterial diagnostics
  • clinical diagnostics