Skip to main content

NADH Oxidation in a Microreactor with an Oscillating Magnetic Field

Abstract

In this study, magnetic nanoparticles (MNPs) of maghemite (γ-Fe2O3) were synthesized and characterized. The method of multifactor experimental design and evolutionary operation (EVOP) was used to optimize immobilization of the alcohol dehydrogenase (ADH) enzyme on MNPs. Optimal operating conditions for the immobilization process were determined (γADH = 0.08 mg/mL, 2% glutaraldehyde for surface activation, t = 28 h), and in such conditions, a specific activity of S.A. = 118 ± 6 U/mg and immobilization efficiency of η = 84.97 ± 3.67% were achieved. Compared to the native enzyme, ADH immobilized on MNPs retained 66.45 ± 3.66% of the initial activity. ADH immobilized on MNPs at optimal conditions was used as a biocatalyst for model reaction—NADH oxidation. NADH oxidation was performed in two different magnetic microreactor configurations: (1) microreactor equipped with permanent square magnets and (2) microreactor equipped with an electromagnet and an oscillating magnetic field that enables magnetic particles movement in the microreactor. In the system with the oscillating magnetic field, equal conversion (X = 100%) was achieved in 2-fold shorter residence time.

References

  1. Wörz, O.; Jackel. K. P.; Richter, T.; Wolf, A. Chem. Eng. Technol. 2001, 24, 138–143.

    Article  Google Scholar 

  2. Ehrfeld, W.; Hessel, V.; Löwe, H. Microreactors: New Technology for Modern Chemistry; Wiley-VCH: Weinheim, 2000, 1–12.

    Google Scholar 

  3. Doku, G. N.; Verboom, W.; Reinhoudt, D. N.; van der Berg, A. Tetrahedron 2005, 61, 2733–2742.

    CAS  Article  Google Scholar 

  4. Hessel, V.; Tibhe, J.; Noël, T.; Wang, Q. Chem. Biochem. Eng. Q 2014, 28, 167–188.

    CAS  Article  Google Scholar 

  5. Prodan, D.; Grecu, V. V.; Grecu, M. N.; Tronc, E.; Jolivet, J. P. Meas. Sci. Technol. 1999, 10, 41–43.

    Article  Google Scholar 

  6. Lu, A. H.; Salabas, E. L.; Schüth, F. Angew. Chem., Int. Ed. 2007, 46, 1222–1244.

    CAS  Article  Google Scholar 

  7. Xiong, Y.; Ye, J.; Gu, X.; Chen, Q. J. Magn. Magn. Mater. 2008, 320, 107–112.

    Article  Google Scholar 

  8. Drbohlavova, J.; Hrdy, R.; Adam, V.; Kizek, R.; Schneeweiss, O.; Hubalek, J. Sensors 2009, 9, 2352–2362.

    CAS  Article  Google Scholar 

  9. Zhao, Y.; Qiu, Z.; Huang, J. Chin. J. Chem. Eng. 2008, 16, 451–455.

    CAS  Article  Google Scholar 

  10. Moghimi, S. M.; Hunter, A. C. H.; Murray, J. C. Pharm. Rev. 2001, 53, 283–318.

    CAS  Google Scholar 

  11. Halling, PJ.; Dunnill, P. Enzyme Microb. Tech. 1980, 2, 2–10.

    CAS  Article  Google Scholar 

  12. Johnson, P. A.; Park, H. J.; Driscoll, A. J. Methods Mol. Biol. 2011, 679, 183–191.

    Article  Google Scholar 

  13. Liao, M. H.; Chen, D. H. Biotechnol. Lett. 2001, 23, 1723–1727.

    CAS  Article  Google Scholar 

  14. Shinkai, M.; Honda, H.; Kobayashi, T. Biocatalysis 1991, 15, 61–69.

    Article  Google Scholar 

  15. Li, G. Y.; Huang, K. L.; Jiang, Y. R.; Yang, D. L.; Ding, P. Int. J. Biol. Macromol. 2008, 42, 405–412.

    CAS  Article  Google Scholar 

  16. Goldberg, K.; Krueger, A.; Meinhardt, T.; Kroutil, W.; Mautner, B.; Liese, A. Tetrahedron: Asymmetry 2008, 19, 1171–1173.

    CAS  Article  Google Scholar 

  17. Kang, S.;Jo,Y.; Bak, J.; Kim, K.; Kim, Y. J. J. Nanosci. Nanotechno. 2007, 7, 3706–3708.

    CAS  Article  Google Scholar 

  18. Pamme, N.; Manz, A. Anal. Chem. 2004, 76, 7250–7256.

    CAS  Article  Google Scholar 

  19. Salie, A.; Zelie, B. RSCAdv. 2014, 4, 41714–41721.

    Google Scholar 

  20. Salie, A.; Pindrie, K.; Hojnik Podrepsek, G.; Leitgeb, M.; Zelic, B. Green Process. Synth. 2013, 2, 569–578.

    Google Scholar 

  21. Sheldon, R. A.; Schoevaart, R.; van Langen, L. M. Biocatal. Biotransform. 2005, 23, 141–147.

    CAS  Article  Google Scholar 

  22. Sulek, F.; Drofenik, M.; Habulin, M.; Knez, Z. J. Magn. Magn. Mater. 2010, 322, 179–185.

    CAS  Article  Google Scholar 

  23. Sulek, F.; Knez, Z.; Habulin, M. Appl. Surf. Sci. 2010, 256, 4596–4600.

    Article  Google Scholar 

  24. Banerjee, R.; Bhattacharyya, B. C. Biochem. Eng. J. 2003, 13, 149–155.

    CAS  Article  Google Scholar 

  25. Kar, B.; Banerjee, R.; Bhattacharyya, B. C. Process Biochem. 2002, 37, 1395–1401.

    CAS  Article  Google Scholar 

  26. Negi, S.; Banerjee, R. Food Technol. Biotechnol. 2004, 44, 257–261.

    Google Scholar 

  27. Clesceri, L. S.; Greenberg, A. E.; Eaton, A. D. Standard Methods for the Examination of Water and Wastewater, 20th edn.; Washington: American Public Health Association, 1998, pp. 3–75.

    Google Scholar 

  28. Vrsalovie Presecki, A.; Vasie-Racki, B. Process Biochem. 2009, 44, 54–61.

    Article  Google Scholar 

  29. Salie, A.; Faletar, P.; Zelie, B. Biochem. Eng. J. 2013, 77, 88–96.

    Article  Google Scholar 

  30. Pandya, P. H.; Jarsa, R. V.; Newalkar, B. L.; Bhalt, P. N. Micropor. Mesopor. Mat. 2005, 77, 67–77.

    CAS  Article  Google Scholar 

  31. Mustapie, M.; Pajie, D.; Novosel, N.; Babie, E.; Zadro, K.; Cindrie, M.; Horvat, J.; Skoko, Z.; Bijleie, M.; Shcherbakov, A. Croat. Chem. Acta. 2010, 83, 275–282.

    Google Scholar 

  32. Derks, R.; Dietzel, A.; Wimberger-Friedl, R.; Prins, M. Microfluid. Nanofluid. 2007, 3, 141–149.

    CAS  Article  Google Scholar 

  33. Levenspiel, O. Chemical Reaction Engineering, 3rd edn.; Wiley: New York, 1999.

    Google Scholar 

  34. van’t Riet, K.; Tramper, J. Basic Reactor Design; Marcel Dekker: New York, 1991.

    Google Scholar 

  35. Findrik, Z.; Vrsalovie Presecki, A.; Vasie-Racki, B. Bioprocess. Biosyst. Eng. 2010, 33, 299–307.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maja Leitgeb or Bruno Zelić.

Additional information

G.H.P. is currently employed at ALBA Recycling GmbH, Establishment Maribor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Šalić, A., Pindrić, K., Podrepšek, G.H. et al. NADH Oxidation in a Microreactor with an Oscillating Magnetic Field. J Flow Chem 6, 27–32 (2016). https://doi.org/10.1556/1846.2015.00034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/1846.2015.00034

Keyword

  • magnetic nanoparticles
  • enzyme immobilization
  • ADH
  • NADH oxidation
  • microreactors