Advertisement

Journal of Flow Chemistry

, Volume 5, Issue 4, pp 201–209 | Cite as

Synthesis of N,N′-dialkyl-6,6′-dibromoisoindigo Derivatives by Continuous Flow

  • Veronique Maes
  • Geert Pirotte
  • Jeroen Brebels
  • Pieter Verstappen
  • Laurence Lutsen
  • Dirk Vanderzande
  • Wouter Maes
Full Paper
  • 14 Downloads

Abstract

In this work, the synthesis of N,N′-dialkyl-6,6′-dibromoisoindigo derivatives by continuous-flow chemistry is explored as a means to enhance material availability and structural diversity, in particular toward the application of isoindigo-based semiconductors in high-performance organic photovoltaic devices. The individual steps in the conventional batch synthesis protocol are evaluated and, when needed, adapted to flow reactors. To overcome the low solubility of nonalkylated 6,6′-dibromoisoindigo in common organic solvents, the flow condensation reaction between the 6-bromo-isatin and 6-bromo-oxindole precursors is evaluated in polar aprotic solvents. Dialkylation of 6,6′-dibromoisoindigo is readily performed in flow using a solid-phase reactor packed with potassium carbonate. In an alternative strategy, solubility is ensured by first introducing the N-alkyl side chains on 6-bromo-isatin and 6-bromo-oxindole (accessible via a highyielding flow reduction of alkylated 6-bromo-isatin), followed by condensation using the conventional method in acetic-hydrochloric acid medium. The N,N′-dialkylated 6,6′-dibromoisoindigo derivatives indeed show enhanced solubility in the hot reaction mixture compared to the non-alkylated material but eventually precipitate when the reaction mixture is cooled down. Nevertheless, the condensation between both alkylated starting materials is achieved in flow without any blockages by keeping the outlet from the reactor heated and as short as possible. The latter strategy allows the preparation of both symmetrically and asymmetrically N-substituted isoindigo compounds.

Keywords

isoindigo N-alkylation condensation reduction asymmetric substitution organic photovoltaics 

Supplementary material

41981_2015_5040201_MOESM1_ESM.pdf (1.4 mb)
Supplementary material, approximately 1432 KB.

References

  1. 1.
    Dou, L.; You, J.; Hong, Z.; Z.; Li, G.; Street, R. A.; Yang, Y. Adv. Mater. 2013, 25, 6642–6671.CrossRefGoogle Scholar
  2. 2.
    Kippelen, B.; Brëdas, J.-L. Energy Environ. Sci. 2009, 2, 251–261.CrossRefGoogle Scholar
  3. 3.
    Su, Y.; Lan, S.; Wei, K. Mater. Today 2012, 15, 554–562.CrossRefGoogle Scholar
  4. 4.
    Scharber, M. C.; Sariciftci, N. S. Prog. Polym. Sci. 2013, 38, 1929–1940.CrossRefGoogle Scholar
  5. 5.
    Lizin, S.; Van Passel, S.; De Schepper, E.; Maes, W.; Lutsen, L.; Manca, J.; Vanderzande, D. Energy Environ. Sci. 2013, 6, 3136–3149.CrossRefGoogle Scholar
  6. 6.
    He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. Photonics 2012, 6, 593–597.Google Scholar
  7. 7.
    Kyaw, A. K. K.; Wang, D. H.; Gupta, V.; Leong, W. L.; Ke, L.; Bazan, G. C.; Heeger, A. J. ACS Nano 2013, 7, 4569–4577.CrossRefGoogle Scholar
  8. 8.
    Hendriks, K. H.; Heintges, G. H. L.; Gevaerts, V. S.; Wienk, M. M.; Janssen, R. A. J. Angew. Chem. Int. Ed. 2013, 52, 8341–8344.CrossRefGoogle Scholar
  9. 9.
    Cabanetos, C.; El Labban, A.; Bartelt, J. A.; Douglas, J. D.; Mateker, W. R.; Frëchet, J. M. J.; McGehee, M. D.; Beaujuge, P. M. J. Am. Chem. Soc. 2013, 135, 4656–4659.CrossRefGoogle Scholar
  10. 10.
    Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Nat. Commun. 2014, 5, 5293.CrossRefGoogle Scholar
  11. 11.
    Liu, Y.; Yang, Y. M.; Chen, C.-C.; Chen, Q.; Dou, L.; Hong, Z.; Li, G.; Yang, Y. Adv. Mater. 2013, 25, 4657–4662.CrossRefGoogle Scholar
  12. 12.
    Zhang, W.; Wu, Y.; Bao, Q.; Gao, F.; Fang, J. Adv. Energy Mater. 2014, 4, 1400359.CrossRefGoogle Scholar
  13. 13.
    Kan, B.; Li, M.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Long, G.; Yang, X.; Feng, H.; Zuo, Y.; Zhang, M.; Huang, F.; Cao, Y.; Russell, T. P.; Chen, Y. J. Am. Chem. Soc. 2015, 137, 3886–3893.CrossRefGoogle Scholar
  14. 14.
    Kesters, J.; Ghoos, T.; Penxten, H.; Drijkoningen, J.; Vangerven, T.; Lyons, D. M.; Verreet, B.; Aernouts, T.; Lutsen, L.; Vanderzande, D.; Manca, J.; Maes, W. Adv. Energy Mater. 2013, 3, 1180–1185.CrossRefGoogle Scholar
  15. 15.
    Gao, K.; Li, L.; Lai, T.; Xiao, L.; Huang, Y.; Huang, F.; Peng, J.; Cao, Y.; Liu, F.; Russell, T. P.; Janssen, R. A. J.; Peng, X. J. Am. Chem. Soc. 2015, 137, 7282–7285.CrossRefGoogle Scholar
  16. 16.
    Sun, K.; Xiao, Z.; Lu, S.; Zajaczkowski, W.; Pisula, W.; Hanssen, E.; White, J. M.; Williamson, R. M.; Subbiah, J.; Ouyang, J.; Holmes, A. B.; Wong, W. W. H.; Jones, D. J. Nat. Commun. 2015, 6, 6013.CrossRefGoogle Scholar
  17. 17.
    Jagadamma, L. K.; Al-Senani, M.; El-Labban, A.; Gereige, I.; Ngongang Ndjawa, G. O.; Faria, J. C. D.; Kim, T.; Zhao, K.; Cruciani, F.; Anjum, D. H.; McLachlan, M. A.; Beaujuge, P. M.; Amassian, A. Adv. Energy Mater. 2015, 5, 1500204.CrossRefGoogle Scholar
  18. 18.
    Söndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T. T.; Krebs, F. C. Mater. Today 2012, 15, 36–49.CrossRefGoogle Scholar
  19. 19.
    Jas, G.; Kirschning, A. Chem.–A Eur. J. 2003, 9, 5708–5723.CrossRefGoogle Scholar
  20. 20.
    Watts, P.; Haswell, S. J. Chem. Soc. Rev. 2005, 34, 235–246.CrossRefGoogle Scholar
  21. 21.
    Dietrich, T. R. Microchemical Engineering in Practice; John Wiley & Sons, Inc., Hoboken, NJ, USA, 2009.CrossRefGoogle Scholar
  22. 22.
    Wiles, C.; Watts, P. Green Chem. 2012, 14, 38–54.CrossRefGoogle Scholar
  23. 23.
    Newman, S. G.; Jensen, K. F. Green Chem. 2013, 15, 1456–1472.CrossRefGoogle Scholar
  24. 24.
    Bannock, J. H.; Krishnadasan, S. H.; Nightingale, A. M.; Yau, C. P.; Khaw, K.; Burkitt, D.; Halls, J. J. M.; Heeney, M.; de Mello, J. C. Adv. Funct. Mater. 2013, 23, 2123–2129.CrossRefGoogle Scholar
  25. 25.
    Kumar, A.; Hasan, J.; Majji, A.; Avhale, A.; Gopinathan, S.; Sharma, P.; Tarange, D.; Bajpai, R.; Kumar, A. J. Flow Chem. 2014, 4, 206–210.CrossRefGoogle Scholar
  26. 26.
    Seyler, H.; Jones, D. J.; Holmes, A. B.; Wong, W. W. H. Chem. Commun. 2012, 48, 1598–1600.CrossRefGoogle Scholar
  27. 27.
    Grenier, F.; Aich, B. R.; Lai, Y.; Guërette, M.; Holmes, A. B.; Tao, Y.; Wong, W. W. H.; Leclerc, M. Chem. Mater. 2015, 27, 2137–2143.CrossRefGoogle Scholar
  28. 28.
    Helgesen, M.; Carlë, J. E.; dos Reis Benatto, G. A.; Söndergaard, R. R.; Jörgensen, M.; Bundgaard, E.; Krebs, F. C. Adv. Energy Mater. 2015, 5, 1401996.CrossRefGoogle Scholar
  29. 29.
    Seyler, H.; Wong, W. W. H.; Jones, D. J.; Holmes, A. B. J. Org. Chem. 2011, 76, 3551–3556.CrossRefGoogle Scholar
  30. 30.
    Rossi, E.; Carofiglio, T.; Venturi, A.; Ndobe, A.; Muccini, M.; Maggini, M. Energy Environ. Sci. 2011, 4, 725–727.CrossRefGoogle Scholar
  31. 31.
    Pirotte, G.; Kesters, J.; Verstappen, P.; Govaerts, S.; Manca, J.; Lutsen, L.; Vanderzande, D.; Maes, W. ChemSusChem 2015, 8, 3228–3233.CrossRefGoogle Scholar
  32. 32.
    Flores, J.-C.; Berens, U.; Bienewald, F.; Kirner, H. J.; Turbiez, M. G. R. Ketopyrroles as organic semiconductors. US20100297405 A1, 2010.Google Scholar
  33. 33.
    Mei, J.; Graham, K.; Stalder, R.; Reynolds, J. Org. Lett. 2010, 12, 660–663.CrossRefGoogle Scholar
  34. 34.
    Stalder, R.; Mei, J.; Graham, K. R.; Estrada, L. A.; Reynolds, J. R. Chem. Mater. 2014, 26, 664–678.CrossRefGoogle Scholar
  35. 35.
    Wang, E.; Mammo, W.; Andersson, M. R. Adv. Mater. 2014, 26, 1801–1826.CrossRefGoogle Scholar
  36. 36.
    Yang, Y.; Wu, R.; Wang, X.; Xu, X.; Li, Z.; Li, K.; Peng, Q. Chem. Commun. 2014, 50, 439–441.CrossRefGoogle Scholar
  37. 37.
    Deng, Y.; Liu, J.; Wang, J.; Liu, L.; Li, W.; Tian, H.; Zhang, X.; Xie, Z.; Geng, Y.; Wang, F. Adv. Mater. 2014, 26, 471–476.CrossRefGoogle Scholar
  38. 38.
    Jung, E. H.; Jo, W. H. Energy Environ. Sci. 2014, 7, 650–654.CrossRefGoogle Scholar
  39. 39.
    Tomassetti, M.; Ouhib, F.; Wislez, A.; Duwez, A.-S.; Penxten, H.; Dierckx, W.; Cardinaletti, I.; Bovee, R. A. A.; van Pruissen, G. W. P.; Jërôme, C.; Manca, J.; Maes, W.; Detrembleur, C. Polym. Chem. 2015, 6, 6040–6049.CrossRefGoogle Scholar
  40. 40.
    Graham, K. R.; Wieruszewski, P. M.; Stalder, R.; Hartel, M. J.; Mei, J.; So, F.; Reynolds, J. R. Adv. Funct. Mater. 2012, 22, 4801–4813.CrossRefGoogle Scholar
  41. 41.
    Ma, Z.; Dang, D.; Tang, Z.; Gedefaw, D.; Bergqvist, J.; Zhu, W.; Mammo, W.; Andersson, M. R.; Inganäs, O.; Zhang, F.; Wang, E. Adv. Energy Mater. 2014, 4, 1301455.CrossRefGoogle Scholar
  42. 42.
    Shmidt, M. S.; Reverdito, A. M.; Kremenchuzky, L.; Perillo, I. A.; M. M. Molecules 2008, 13, 831–840.CrossRefGoogle Scholar
  43. 43.
    Reichart, B.; Kappe, C.; T. Synlett 2013, 24, 2393–2396.CrossRefGoogle Scholar
  44. 44.
    Haraguchi, K.; Li, H.-J.; Matsuda, K.; Takehisa, T.; Elliott, E. Macromolecules 2005, 38, 3482–3490.CrossRefGoogle Scholar
  45. 45.
    Ers, L.; Blass, B. E.; Drowns, M.; Harris, C. L.; Liu, S.; Portlock, D. E. Tetrahedron Lett. 1999, 40, 6545–6547.CrossRefGoogle Scholar
  46. 46.
    Silva, J. F. M.; Garden, S. J.; Pinto, A. C. J. Braz. Chem. Soc. 2001, 12, 273–324.CrossRefGoogle Scholar
  47. 47.
    Clay, C. M., Synthesis of Isatin Derivatives Used for the Inhibition of Pro-Apoptotic Jurkat T Cells. PhD Thesis, Wright State University, 2011.Google Scholar
  48. 48.
    Becker, D. P.; Finnegan, P. M.; Collins, P.W. Tetrahedron Lett. 1993, 34, 1889–1892.CrossRefGoogle Scholar
  49. 49.
    Bulut, I.; Lëvêque, P.; Heinrich, B.; Heiser, T.; Bechara, R.; Zimmermann, N.; Mëry, S.; Ziessel, R.; Leclerc, N. J. Mater. Chem. A 2015, 3, 6620–6628.CrossRefGoogle Scholar
  50. 50.
    Van Pruissen, G. W. P.; Brebels, J.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Macromolecules 2015, 48, 2435–2443.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  • Veronique Maes
    • 1
    • 2
  • Geert Pirotte
    • 1
    • 2
  • Jeroen Brebels
    • 1
    • 2
  • Pieter Verstappen
    • 1
    • 2
  • Laurence Lutsen
    • 2
  • Dirk Vanderzande
    • 1
    • 2
  • Wouter Maes
    • 1
    • 2
  1. 1.Design and Synthesis of Organic Semiconductors (DSOS), Institute for Materials Research (IMO-IMOMEC)Hasselt UniversityDiepenbeekBelgium
  2. 2.IMEC-IMOMECUniversitaire CampusDiepenbeekBelgium

Personalised recommendations