Journal of Flow Chemistry

, Volume 5, Issue 3, pp 190–194 | Cite as

Highlights from the Flow Chemistry Literature 2015 (Part 2)

  • Amol A. Kulkarni
Research Highlights


In this section of the journal, the literature on continuous-flow synthesis (primarily organic synthesis and functional materials) from the period of April to June 2015 is presented. All the publications are listed and ordered by journal name, with a review article appearing at the end. With a few special issues on flow synthesis that would be appearing in other journals in coming months, the list of publications in this area is expected to grow rapidly towards the end of this year.

Organic Synthesis

  1. “High-throughput generation of emulsions and microgels in parallelized microfluidic drop-makers prepared by rapid prototyping” T. Femmer, A. Jans, R. Eswein, N. Anwar, M. Moeller, M. Wessling, A. J. C. Kuehne ACS Applied Materials & Interfaces 2015, 7, 12635–12638CrossRefGoogle Scholar
  2. “Magnetic droplet microfluidics as a platform for the concentration of [18 F]fluoride and radiosynthesis of sulfonyl [18 F]fluoride” S. A. Fiel, H. Yang, P. Schaffer, S. Weng, J. A. H. Inkster, M. C. K. Wong, P. C. H. Li ACS Applied Materials & Interfaces 2015, 7, 12923–12929CrossRefGoogle Scholar
  3. “A flow-through enzymatic microreactor for the rapid conversion of triacylglycerols into fatty acid ethyl ester and fatty acid methyl ester derivatives for GC analysis” S. T. Anuar, S. M. Mugo, J. M. Curtis Analytical Methods 2015, 7, 5898–5906CrossRefGoogle Scholar
  4. “Making ends meet: flow synthesis as the answer to reproducible high-performance conjugated polymers on the scale that roll-to-roll processing demands” M. Helgesen, J. E. Carlé, G. A. dos Reis Benatto, R. R. Sondergaard, M. Jorgensen, E. Bundgaard, F. C. Krebs Advanced Energy Materials 2015, 5Google Scholar
  5. “Reactions of difunctional electrophiles with functionalized aryllithium compounds: remarkable chemoselectivity by flash chemistry” A. Nagaki, K. Imai, S. Ishiuchi, J. Yoshida Angew. Chem. Int. Ed. 2015, 54, 1914–1918CrossRefGoogle Scholar
  6. “Continuous synthesis of diethyl carbonate from ethanol and CO2 over Ce-Zr-O catalysts” I. Prymak, V. N. Kalevaru, S. Wohlrab, A. Martin Catalysis Science & Technology 2015, 5, 2322–2331CrossRefGoogle Scholar
  7. “Continuous poly(2-oxazoline) triblock copolymer synthesis in a microfluidic reactor cascade” E. Baeten, B. Verbraeken, R. Hoogenboom, T. Junkers Chemical Communications 2015, 51, 11701–11704CrossRefGoogle Scholar
  8. “Continuous synthesis of methanol: heterogeneous hydrogenation of ethylene carbonate over Cu/HMS catalysts in a fixed bed reactor system” X. Chen, Y. Cui, C. Wen, B. Wang, W-L. Dai Chemical Communications 2015, DOI: 10._1039/C5CC05030HGoogle Scholar
  9. “Large-scale continuous hydrothermal production and activation of ZIF-8” A. S. Munn, P. W. Dunne, S. V. Y. Tang, E. H. Lester Chemical Communications 2015, 51, 12811–12814CrossRefGoogle Scholar
  10. “Continuous flow of nitroso Diels-Alder reaction” E. Nakashima, H. Yamamoto Chemical Communications 2015, 51, 12309–12312CrossRefGoogle Scholar
  11. “Decarboxylative Reissert type trifluoro- and trichloro-methylation of (iso)quinoline derivatives in batch and continuous flow” M. Therkelsen, M. T. Rasmussen, A. T. Lindhardt Chemical Communications 2015, 51, 9651–9654CrossRefGoogle Scholar
  12. “Continuous metal scavenging and coupling to one-pot copper-catalyzed azide-alkyne cycloaddition click reaction in flow” I.V. Gürsel, F. Aldiansyah, Q. Wang, T. Noël, V. Hessel Chemical Engineering Journal 2015, 270, 468–475CrossRefGoogle Scholar
  13. “Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system” Y. Lei, H. Zhang, J. Wang, J. Ai Chemical Engineering Journal 2015, 270, 73–79Google Scholar
  14. “Nafion-H-catalyzed high-temperature/high-pressure synthesis of a triarylmethane in continuous-flow mode” S. Hayden, T. Glasnov and C. O. Kappe Chemical Engineering & Technology 2015, DOI: 10._1002/ceat.201400581Google Scholar
  15. “Highly selective continuous-flow synthesis of potentially bioactive deuterated chalcone derivatives” C. T. Hsieh, S. B. Ötvös, Y. C. Wu, I. M. Mandity, F. R. Chang, F. Fülöp ChemPlusChem 2015, 80, 859–864CrossRefGoogle Scholar
  16. “Flash chemistry using trichlorovinyllithium: Switching the reaction pathways by high-resolution reaction time control” A. Nagaki, Y. Takahashi, A. Henseler, C. Matsuo, J. Yoshida Chemistry Letters, 2015, 44, 214–216CrossRefGoogle Scholar
  17. “Gas-liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures” G. H. Albuquerque, R. C. Fitzmorris, M. Ahmadi, N. Wannenmacher, P. K. Thallapally, B. P. McGrail, G. S. Herman CrystEngComm 2015, 17, 5502–5510CrossRefGoogle Scholar
  18. “Enantioselective [small alpha]-amination of 1,3-dicarbonyl compounds in batch and flow with immobilized thiourea organocatalysts” P. Kasaplar, E. Ozkal, C. Rodriguez-Escrich, M. A. Pericas Green Chemistry 2015, 17, 3122–3129CrossRefGoogle Scholar
  19. “Catalyst coating on prefabricated capillary microchannels for the direct synthesis of hydrogen peroxide” V. Paunovic, V. Ordomsky, M. F. N. D’Angelo, J. C. Schouten, T. A. Nijhuis Industrial & Engineering Chemistry Research 2015, 54, 2919–2929CrossRefGoogle Scholar
  20. “Continuous photofermentative production of hydrogen by immobilized Rhodobacter sphaeroides O.U.001” R. Zagrodnik, K. Seifert, M. Stodolny, M. Laniecki International Journal of Hydrogen Energy 2015, 40, 5062–5073CrossRefGoogle Scholar
  21. “Sorption-enhanced reforming of bioethanol in dual fixed bed reactor for continuous hydrogen production” A. Lysikov, V. Derevschikov, A. Okunev International Journal of Hydrogen Energy 2015, DOI: 10._1016/j.ijhydene.2015._06._029Google Scholar
  22. “Decarbonisation offossil energy via methane pyrolysis using two reactor concepts: Fluid wall flow reactor and molten metal capillary reactor” Schultz, D. W. Agar International Journal of Hydrogen Energy 2015, DOI: 10._1016/j.ijhydene.2015._03._126Google Scholar
  23. “One-step, facile and ultrafast synthesis of phase- and size-controlled Pt-Bi intermetallic nanocatalysts through continuous-flow microfluidics” D. Zhang, F. Wu, M. Peng, X. Wang, D. Xia, G. Guo Journal of the American Chemical Society 2015, 137, 6263–6269CrossRefGoogle Scholar
  24. “Flow alkylation of thiols, phenols, and amines using a heterogenous base in a packed-bed reactor” A. Baker, M. Graz, R. Saunders, G. J. S. Evans, I. Pitotti, T. Wirth Journal of Flow Chemistry 2015, 5, 65–68CrossRefGoogle Scholar
  25. “The use of flow chemistry for two-phase dibromocyclopropanation of alkenes” R. B. Østby, Y. H. Stenstrom, T. Didriksen Journal of Flow Chemistry 2015, 5, 69–73Google Scholar
  26. “Multistep continuous-flow synthesis of condensed benzothiazoles” K. Lövei, I. Greiner, J. Éles, A. Szigetvari, M. Dékany, S. Lévai, Z. Novak, G. I. Turós Journal of Flow Chemistry 2015, 5, 74–81CrossRefGoogle Scholar
  27. “Two-stage flow synthesis of coumarin via O-acetylation of salicylaldehyde” X. Li, A. Chen, Y. Zhou, L. Huang, Z. Fang, H. Gan, K. Guo Journal of Flow Chemistry 2015, 5, 82–86CrossRefGoogle Scholar
  28. “Influence of support properties on the activity of basic catalysts for aldol condensation of formaldehyde and methyl acetate in a continuous-flow reactor” Y. Wang, H. Chen, G. Zhao, M. Liu, X. Lang, Z. Zhu Journal of Flow Chemistry 2015, 5, 87–94CrossRefGoogle Scholar
  29. “Continuous-flow alcohol protection and deprotection reactions catalyzed by silica-supported sulfonic acid” S. A. van den Berg, R. A. M. Frijns, T. Wennekes, H. Zuilhof Journal of Flow Chemistry 2015, 5, 95–100CrossRefGoogle Scholar
  30. “Active mixing inside double emulsion segments in continuous flow” V. Misuk, A. Mai, Y. Zhao, J. Heinrich, D. Rauber, K. Giannopoulos, H. Löwe Journal of Flow Chemistry 2015, 5, 101–109Google Scholar
  31. “Scaling up the throughput of synthesis and extraction in droplet microfluidic reactors” P. M. Korczyk, M. E. Dolega, S. Jakiela, P. Jankowski, S. Makulska, P. Garstecki Journal of Flow Chemistry 2015, 5, 110–118CrossRefGoogle Scholar
  32. “3D graphene/nylon rope as a skeleton for noble metal nanocatalysts for highly efficient heterogeneous continuous-flow reactions” S. Zhang, X. Shen, Z. Zheng, Y. Ma, Y. Qu Journal of Materials Chemistry A 2015, 3, 10504–10511CrossRefGoogle Scholar
  33. “Benzyllithiums bearing aldehyde carbonyl groups. A flash chemistry approach” A. Nagaki, Y. Tsuchihashi, S. Haraki, J. Yoshida J. Org. Biomol. Chem. 2015, 13, 7140–7145Google Scholar
  34. “Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts” T. Tsubogo, H. Oyamada, S. Kobayashi Nature 2015, 520, 329–332Google Scholar
  35. “Machines vs malaria: a flow-based preparation of the drug candidate OZ439” S-H. Lau, A. Galvan, R. R. Merchant, C. Battilocchio, J. A. Souto, M. B. Berry, S. V. Ley Organic Letters 2015, 17, 3218–3221CrossRefGoogle Scholar
  36. “Recovery of artemisinin from a complex reaction mixture using continuous chromatography and crystallization” Z. Horvath, E. Horosanskaia, J. W. Lee, H. Lorenz, K. Gilmore, P. H. Seeberger, A. Seidel-Morgenstern Organic Process Research & Development 2015, 19, 624–634CrossRefGoogle Scholar
  37. “Continuous-flow process for the synthesis of 2-ethylphenylhydrazine hydrochloride” Z. Yu, G. Tong, X. Xie, P. Zhou, Y. Lv, W. Su Organic Process Research & Development 2015, 19, 892–896Google Scholar
  38. “Continuous-flow synthesis of meta-substituted phenol derivatives” J. H. Park, C. Y. Park, M. J. Kim, M. U. Kim, Y. J. Kim, G.-H. Kim, C. P. Park Organic Process Research & Development 2015, 19, 812–818CrossRefGoogle Scholar
  39. “The Biginelli reaction under batch and continuous flow conditions: catalysis, mechanism and antitumoral activity” G. C. O. Silva, J. R. Correa, M. O. Rodrigues, H. G. O. Alvim, B. C. Guido, C. C. Gatto, K. A. Wanderley, M. Fioramonte, F. C. Gozzo, R. O. M. A. de Souza, B. A. D. Neto RSC Advances 2015, 5, 48506–48515CrossRefGoogle Scholar
  40. “Continuous-flow hydrogenation of olefins and nitrobenzenes catalyzed by platinum nanoparticles dispersed in an amphiphilic polymer” T. Osako, K. Torii, A. Tazawa, Y. Uozumi RSC Advances 2015, 5, 45760–45766CrossRefGoogle Scholar
  41. “A continuous-flow synthesis of 1,4-benzodiazepin-5-ones, privileged scaffolds for drug discovery” M. Viviano, C. Milite, D. Rescigno, S. Castellano, G. Sbardella RSC Advances 2015, 5, 1268–1273 (also as Chemlnform 2015, 46 (20))CrossRefGoogle Scholar
  42. “A sequential Ugi multicomponent/Cu-catalyzed azide-alkyne cycloaddition approach for the continuous flow generation of cyclic peptoids” C. E. M. Salvador, B. Pieber, P. M. Neu, A. Torvisco, C. K. Z. Andrade, C. O. Kappe The Journal of Organic Chemistry 2015, 80, 4590–4602CrossRefGoogle Scholar
  43. “Polymerization of vinyl ethers initiated by dendritic cations using flow microreactors” A. Nagaki, M. Takumi, Y. Tani, J. Yoshida Tetrahedron 2015, 71, 5973–5978CrossRefGoogle Scholar


  1. “A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties” D. Liu, S. Cito, Y. Zhang, C. Wang, T. M. Sikanen, H. A. Santos Advanced Materials 2015, 27, 2298–2304CrossRefGoogle Scholar
  2. “Microfluidic synthesis of biodegradable polyethylene-glycol microspheres for controlled delivery of proteins and DNA nanoparticles” L. Deveza, J. Ashoken, G. Castaneda, X. Tong, M. Keeney, L.-H. Han, F. Yang ACS Biomaterials Science & Engineering 2015, 1, 157–165CrossRefGoogle Scholar
  3. “Widening synthesis bottlenecks: realization of ultrafast and continuous-flow synthesis of high-silica zeolite SSZ-13 for NOx removal” Z. Liu, T. Wakihara, K. Oshima, D. Nishioka, Y. Hotta, S. P. Elangovan, Y. Yanaba, T. Yoshikawa, W. Chaikittisilp, T. Matsuo, T. Takewaki, T. Okubo Angewandte Chemie International Edition 2015, 54, 5683–5687CrossRefGoogle Scholar
  4. “Production of polymeric nanoparticles by micromixing in a co-flow microfluidic glass capillary device” R. Othman, G. T. Vladisavljevic, H. C. H. Bandulasena, Z. K. Nagy Chemical Engineering Journal 2015, 280, 316–329CrossRefGoogle Scholar
  5. “Process intensification: nano-carrier formation by a continuous dense gas process” C. C. Beh, R. Mammucari, N. R. Foster Chemical Engineering Journal 2015, 266, 320–328CrossRefGoogle Scholar
  6. “Scalable continuous solvo-jet process for ZIF-8 nanoparticles” H-S. Choi, S-J. Lee, Y-S. Bae, S-J. Choung, S-H. Im, J. Kim Chemical Engineering Journal 2015, 266, 56–63CrossRefGoogle Scholar
  7. “Continuous synthesis of hierarchical porous ZnO microspheres in supercritical methanol and their enhanced electrochemical performance in lithium ion batteries” J. Kim, S-A. Hong, J. Yoo Chemical Engineering Journal 2015, 266, 179–188Google Scholar
  8. “Segmented flow-based multistep synthesis of cadmium selenide quantum dots with narrow particle size distribution” V. Misuk, M. Schmidt, S. Braukmann, K. Giannopoulos, D. Karl, H. Loewe Chemical Engineering & Technology 2015, 38, 1150–1153CrossRefGoogle Scholar
  9. “Segmented flow-based multistep synthesis of cadmium selenide quantum dots with narrow particle size distribution” V. Misuk, M. Schmidt, S. Braukmann, K. Giannopoulos, D. Karl, H. Loewe Chemical Engineering & Technology 2015, 38, 1150–1153CrossRefGoogle Scholar
  10. “Gas slug microfluidics: a unique tool for ultrafast, highly controlled growth of iron oxide nanostructures” A. Larrea, V. Sebastian, A. Ibarra, M. Arruebo, J. Santamaria Chemistry of Materials 2015, 27, 4254–4260CrossRefGoogle Scholar
  11. “Generation of alginate nanoparticles through microfluidics-aided polyelectrolyte complexation” K. Kim, D. Kang, M. Kim, K. Kim, K. Park, S. Hong, P. Chang, H. Jung Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 471, 86–92CrossRefGoogle Scholar
  12. “The continuous synthesis and application of graphene supported palladium nanoparticles: a highly effective catalyst for Suzuki- Miyaura cross-coupling reactions” K. W. Brinkley, M. Burkholder, A. R. Siamaki, K. Belecki, B. F. Gupton Green Processing and Synthesis 2015, 4, 241–246CrossRefGoogle Scholar
  13. “Changing the size and surface roughness of polymer nanospheres formed using a microfluidic technique” I. Kucuk, M. Edirisinghe Journal of Minerals, Metals and Materials Society 2015, 67, 811–817CrossRefGoogle Scholar
  14. “Soft chemistry synthesis route toward Bi2Te3 hierarchical hollow spheres” J. Fouineau, J. Peron, S. Nowak, M. Giraud, M. Sicard, S. Ammar-Merah, L. Sicard Journal of Nanoparticle Research 2015, 17, 166CrossRefGoogle Scholar
  15. “The influence of stabilizers on the production of gold nanoparticles by direct current atmospheric pressure glow microdischarge generated in contact with liquid flowing cathode” A. Dzimitrowicz, P. Jamroz, K. Greda, P. Nowak, M. Nyk, P. Pohl Journal of Nanoparticle Research 2015, 17, 185CrossRefGoogle Scholar
  16. “On-demand one-step synthesis of monodisperse functional polymeric microspheres with droplet microfluidics” X. Yu, G. Cheng, M. Zhou, S. Zheng Langmuir 2015, 31, 3982–3992CrossRefGoogle Scholar
  17. “Role of self-polarization in a single-step controlled synthesis of linear and branched polymer nanoparticles” N. Visaveliya, J. M. Koehler Macromolecular Chemistry and Physics 2015, 216, 1212–1219CrossRefGoogle Scholar
  18. “Controlled synthesis of layered double hydroxide nanoplates driven by screw dislocations” A. Forticaux, L. Dang, H. Liang, S. Jin Nano Letters 2015, 15, 3403–3409CrossRefGoogle Scholar
  19. “Continuous preparation of Fe3O4 nanoparticles using a rotating packed bed: dependence of size and magnetic property on temperature” C. Lin, J. Ho, M. Wu, Powder Technology 2015, 274, 441–445CrossRefGoogle Scholar
  20. “One-step, facile and ultrafast synthesis of phase- and size-controlled Pt-Bi intermetallic nanocatalysts through continuous-flow microfluidics” D. Zhang, F. Wu, M. Peng, X. Wang, D. Xia, G. Guo Journal of the American Chemical Society 2015, 137, 6263–6269CrossRefGoogle Scholar
  21. “Semi-automated nanoprecipitation-system-an option for operator independent, scalable and size adjustable nanoparticle synthesis” R. Rietscher, C. Thum, C. Lehr, M. Schneider Pharmaceutical Research 2015, 32, 1859–1863CrossRefGoogle Scholar


  1. “Liquid phase oxidation chemistry in continuous-flow microreactors” H. P. L. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque, T. Noel Chemical Society Reviews 2015, DOI: 10._1039/C5CS00447KGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  1. 1.Chem Eng. & Proc. Dev. DivisionCSIR—National Chemical LaboratoryIndia

Personalised recommendations