Skip to main content

Continuous-Flow Biochemical Reactors: Biocatalysis, Bioconversion, and Bioanalytical Applications Utilizing Immobilized Microfluidic Enzyme Reactors

Abstract

The utilization of continuous-flow biochemical reactors, including biocatalysis, biotransformation, and biochemical interaction based flow-analytical systems, and enzyme reactors are recently the focus of attention to produce fine biochemicals and also show great potential in bioanalytical applications. Continuous-flow biochemical processes implemented in microstructured reactors enable short development time to production scale utilizing enzymatic processes to efficiently fulfill the current needs of the fine biochemical and pharmaceutical industry. Immobilization of the enzymes is preferable because it usually enhances their stability, and in some instances, immobilized enzymes can even be reused multiple times. In this review on the continuous-flow biochemical reactors, first the enzyme immobilization strategies will be briefly discussed followed by summarizing the recent developments in the field of immobilized enzyme microflow reactors for biocatalysis, bioconversion and bioanalytical purposes.

References

  1. Panke, S.; Held, M.; Wubbolts, M. Curr. Opin.Biotechnol. 2004, 15, 272–279.

    CAS  Article  Google Scholar 

  2. Noraini, M. Y.; Ong, H. C.; Badrul, M. J.; Chong, W. T. Renewable Sustainable Energy Rev. 2014, 39, 24–34.

    CAS  Article  Google Scholar 

  3. Monzo, A.; Sperling, E.; Guttman, A. TrAc, Trends Anal. Chem. 2009, 28, 854–864.

    CAS  Article  Google Scholar 

  4. Fernandes, P. Int. J. Mol. Sci. 2010, 11, 858–879.

    CAS  Article  Google Scholar 

  5. Asanomi, Y.; Yamaguchi, H.; Miyazaki, M.; Maeda, H. Molecules 2011, 16, 6041–6059.

    CAS  Article  Google Scholar 

  6. Franssen, M. C. R.; Steunenberg, P.; Scott, E. L.; Zuilhof, H.; Sanders, J. P. M. Chem. Soc. Rev. 2013, 42, 6491–6533.

    CAS  Article  Google Scholar 

  7. Tokeshi, M.; Minagawa, T.; Uchiyama, K.; Hibara, A.; Sato, K.; Hisa- moto, H.; Kitamori, T. Anal. Chem. 2002, 74, 1565–1571.

    CAS  Article  Google Scholar 

  8. Miyazaki, M.; Honda, T.; Yamaguchi, H.; Briones, M. P. P.; Maeda, H. Biotechnol. Genet. Eng. Rev. 2008, 25, 405–428.

    CAS  Article  Google Scholar 

  9. Losey, M. W.; Schmidt, M. A.; Jensen, K. F. Ind. Eng. Chem. Res. 2001, 40, 2555–2562.

    CAS  Article  Google Scholar 

  10. Webb, C.; Kang, H. K.; Moffat, G.; Williams, R. A.; Estevez, A. M.; Cuellar, J.; Jaraiz, E.; Galan, M. A. Chem. Eng. J. Biochem. Eng. J. 1996, 61, 241–246.

    CAS  Article  Google Scholar 

  11. Vos, H. J.; Luyben, K. C. A. M.; Westerterp, K. R. Chem. Eng. J. Biochem. Eng. J. 1993, 53, B1-B11.

  12. Chen, H. C.; Ju, H. Y.; Wu, T. T.; Liu, Y. C.; Lee, C. C.; Chang, C.; Chung, Y. L.; Shieh, C. J. J. Biomed. Biotechnol. 2011, 950725.

    Google Scholar 

  13. Ronne, T. H.; Yang, T. K.; Mu, H. L.; Jacobsen, C.; Xu, X. B. J. Agric. Food Chem. 2005, 53, 5617–5624.

    CAS  Article  Google Scholar 

  14. Bolivar, J. M.; Nidetzky, B. Green Process. Synth. 2013, 2, 541–559.

    CAS  Google Scholar 

  15. Tanaka, Y.; Slyadnev, M. N.; Sato, K.; Tokeshi, M.; Kim, H. B.; Kitamori, T. Anal. Sci. 2001, 17, 809–810.

    CAS  Article  Google Scholar 

  16. Zhang, X. N.; Stelanick, S.; Villani, F. J. Org. Process Res. Dev. 2004, 8, 455–460.

    CAS  Article  Google Scholar 

  17. Bolivar, J. M.; Wiesbauer, J.; Nidetzky, B. Trends Biotechnol. 2011, 29, 333–342.

    CAS  Article  Google Scholar 

  18. Miyazaki, M.; Maeda, H. Trends Biotechnol. 2006, 24, 463–470.

    CAS  Article  Google Scholar 

  19. Woitalka, A.; Kuhn, S.; Jensen, K. F. Chem. Eng. Sci. 2014, 116, 1–8.

    CAS  Article  Google Scholar 

  20. Nieves-Remacha, M. J.; Kulkarni, A. A.; Jensen, K. F. Ind. Eng. Chem. Res. 2012, 51, 16251–16262.

    CAS  Article  Google Scholar 

  21. Dann, E.; Schmidt, F.; Chevalier, B. Chim. Oggi 2009, 27, 12–13.

    CAS  Google Scholar 

  22. Kockmann, N.; Gottsponer, M.; Zimmermann, B.; Roberge, D. M. Chem. - Eur. J. 2008, 14, 7470–7477.

    CAS  Article  Google Scholar 

  23. Zhang, F.; Cerato-Noyerie, C.; Woehl, P.; Lavric, E. D. Chem. Eng. Trans. 2011, 24, 1369–1374.

    Google Scholar 

  24. Rodrigues, R. C.; Ortiz, C.; Berenguer-Murcia, A.; Torres, R.; Fernandez-Lafuente, R. Chem. Soc. Rev. 2013, 42, 6290–6307.

    CAS  Article  Google Scholar 

  25. Mateo, C.; Palomo, J. M.; Fernandez-Lorente, G.; Guisan, J. M.; Fernandez-Lafuente, R. Enzyme Microb. Technol. 2007, 40, 1451–1463.

    CAS  Article  Google Scholar 

  26. Bornscheuer, U. T. Angew. Chem., Int. Ed. 2003, 42, 3336–3337.

    CAS  Article  Google Scholar 

  27. Sassolas, A.; Blum, L. J.; Leca-Bouvier, B. D. Biotechnol. Adv. 2012, 30, 489–511.

    CAS  Article  Google Scholar 

  28. Jones, F.; Lu, Z. H.; Elmore, B. B. Appl. Biochem. Biotechnol. 2002, 98, 627–640.

    Article  Google Scholar 

  29. Liu, C.; Zhang, Q.; Kang, J. Methods Mol. Biol. 2013, 984, 321–327.

    CAS  Article  Google Scholar 

  30. Ghafourifar, G.; Fleitz, A.; Waldron, K. C. Electrophoresis 2013, 34, 1804–1811.

    CAS  Article  Google Scholar 

  31. Min, W. N.; Cui, S. M.; Wang, W. P.; Chen, J. R.; Hu, Z. D. Anal. Biochem. 2013, 438, 32–38.

    CAS  Article  Google Scholar 

  32. Sassolas, A.; Hayat, A.; Marty, J. L. Methods Mol. Biol. 2013, 1051, 139–148.

    CAS  Article  Google Scholar 

  33. Cao, L. Q. Curr. Opin. Chem. Biol. 2005, 9, 217–226.

    CAS  Article  Google Scholar 

  34. Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Torres, R.; Rodrigues, R. C.; Fernandez-Lafuente, R. RSC Adv. 2014, 4, 1583–1600.

    CAS  Article  Google Scholar 

  35. Liu, L. N.; Zhang, B.; Zhang, Q.; Shi, Y. H.; Guo, L. P.; Yang, L. J. Chromatogr. A 2014, 1352, 80–86.

    CAS  Article  Google Scholar 

  36. Wang, T.; Ma, J.; Wu, S.; Yuan, H.; Zhang, L.; Liang, Z.; Zhang, Y. Electrophoresis 2011, 32, 2848–2856.

    CAS  Article  Google Scholar 

  37. Wang, T. T.; Ma, J. F.; Zhu, G. J.; Shan, Y. C.; Liang, Z.; Zhang, L. H.; Zhang, Y. K. J. Sep. Sci. 2010, 33, 3194–3200.

    CAS  Article  Google Scholar 

  38. Hisamoto, H.; Shimizu, Y.; Uchiyama, K.; Tokeshi, M.; Kikutani, Y.; Hibara, A.; Kitamori, T. Anal. Chem. 2003, 75, 350–354.

    CAS  Article  Google Scholar 

  39. Shi, J.; Zhao, W. W.; Chen, Y. F.; Guo, L. P.; Yang, L. Electrophoresis 2012, 33, 2145–2151.

    CAS  Article  Google Scholar 

  40. Sheng, J.; Zhang, L.; Lei, J. P.; Ju, H. X. Anal. Chim. Acta 2012, 709, 41–46.

    Article  Google Scholar 

  41. Luckarift, H. R.; Ku, B. S.; Dordick, J. S.; Spain, J. C. Biotechnol. Bioeng. 2007, 98, 701 -705.

    CAS  Article  Google Scholar 

  42. Berne, C.; Betancor, L.; Luckarift, H. R.; Spain, J. C. Biomacromolecules 2006, 7, 2631–2636.

    CAS  Article  Google Scholar 

  43. Schoffer, J. D.; Klein, M. P.; Rodrigues, R. C.; Hertz, P. F. Carbohydr. Polym. 2013, 98, 1311–1316.

    Article  Google Scholar 

  44. Koshibu-Koizumi, J.; Akazawa, M.; Iwamoto, T.; Takasaki, M.; Mizuno, F.; Kobayashi, R.; Abe, A.; Tomoda, A.; Hamatake, M.; Ishida, R. J. Cancer Res. Clin. Oncol. 2002, 128, 363–368.

    CAS  Article  Google Scholar 

  45. Tiwari, G.; Tiwari, R.; Rai, A. K. J. Pharm. BioAllied Sci. 2010, 2, 72–79.

    CAS  Article  Google Scholar 

  46. Madarasz, J.; Nemeth, D.; Bakos, J.; Gubicza, L.; Bakonyi, P. J. Cleaner Prod. 2015, 93, 140–144.

    CAS  Article  Google Scholar 

  47. Tibhe, J. D.; Fu, H.; Noel, T.; Wang, Q.; Meuldijk, J.; Hessel, V. Beilstein J. Org. Chem. 2013, 9, 2168–2179.

    Article  Google Scholar 

  48. Thomsen, M. S.; Nidetzky, B. Biotechnol. J. 2009, 4, 98–107.

    CAS  Article  Google Scholar 

  49. Tavernier, M. L.; Petit, E.; Delattre, C.; Courtois, B.; Courtois, J.; Strancar, A.; Michaud, P. Carbohydr. Res. 2008, 343, 2687–2691.

    CAS  Article  Google Scholar 

  50. Safdar, M.; Spross, J.; Janis, J. J. Mass Spectrom. 2013, 48, 1281–1284.

    CAS  Article  Google Scholar 

  51. Li, Y.; Xu, X. Q.; Yan, B.; Deng, C. H.; Yu, W. J.; Yang, P. Y.; Zhang, X. M. J. Proteome Res. 2007, 6, 2367–2375.

    CAS  Article  Google Scholar 

  52. Krenkova, J.; Szekrenyes, A.; Keresztessy, Z.; Foret, F.; Guttman, A. J. Chromatogr. A 2013, 1322, 54–61.

    CAS  Article  Google Scholar 

  53. Ekstrom, S.; Onnerfjord, P.; Nilsson, J.; Bengtsson, M.; Laurell, T.; Marko-Varga, G. Anal. Chem. 2000, 72, 286–293.

    CAS  Article  Google Scholar 

  54. Ferreira, L. M. C.; da Costa, E. T.; do Lago, C. L.; Angnes, L. Biosens. Bioelectron. 2013, 47, 539–544.

    CAS  Article  Google Scholar 

  55. Yamaguchi, H.; Miyazaki, M.; Honda, T.; Briones-Nagata, M. P.; Arima, K.; Maeda, H. Electrophoresis 2009, 30, 3257–3264.

    CAS  Article  Google Scholar 

  56. Yamaguchi, H.; Miyazaki, M.; Kawazumi, H.; Maeda, H. Anal. Biochem. 2010, 407, 12–18.

    CAS  Article  Google Scholar 

  57. Duan, J. C.; Liang, Z.; Yang, C.; Zhang, J.; Zhang, L. H.; Zhang, W. B.; Zhang, Y. K. Proteomics 2006, 6, 412–419.

    CAS  Article  Google Scholar 

  58. Yu, D. H.; Van Antwerpen, P.; Patris, S.; Blankert, B.; Kauffmann, J. M. Comb. Chem. High Throughput Screening 2010, 13, 455–460.

    CAS  Article  Google Scholar 

  59. Liang, R. P.; Wang, X. N.; Liu, C. M.; Meng, X. Y.; Qiu, J. D. J. Chromatogr. A 2013, 1315, 28–35.

    CAS  Article  Google Scholar 

  60. Lin, P. T.; Zhao, S. L.; Lu, X.; Ye, F. G.; Wang, H. S. J. Sep. Sci. 2013, 36, 2538–2543.

    CAS  Article  Google Scholar 

  61. Roman-Gusetu, G.; Waldron, K. C.; Rochefort, D. J. Chromatogr. A 2009, 1216, 8270–8276.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Guttman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hajba, L., Guttman, A. Continuous-Flow Biochemical Reactors: Biocatalysis, Bioconversion, and Bioanalytical Applications Utilizing Immobilized Microfluidic Enzyme Reactors. J Flow Chem 6, 8–12 (2016). https://doi.org/10.1556/1846.2015.00028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/1846.2015.00028

Keyword

  • continuous-flow biochemical reactor
  • enzyme immobilization
  • microreactors
  • biocatalysis
  • bioconversion
  • bioanalytics