Journal of Flow Chemistry

, Volume 5, Issue 4, pp 197–200 | Cite as

Single-Step Synthesis of Onion-Like Au-Pd-PtNPs Nanoparticles Using Microflow System

  • Magdalena Luty-Błocho
  • Marek WojnickiEmail author


This paper describes the method of onion-like nanoparticles synthesis in a microflow. As the core of a material, platinum nanoparticles were used. The first shell consists of metallic palladium, and the second one is metallic gold, respectively. The synthesis of onion-like nanostructure was performed using microflow reactors system, which consists of 3 independent elements. As the reducing agent of precious metals ions, vitamin C was used. To prevent NPs from the aggregation, a polyvinyl alcohol as the stabilizing agent was applied.


microreactor microflow reactor gold(III) chloride complex ions palladium(II) chloride complex ions platinum(IV) chloride complex ions nanoparticles synthesis PVA vitamin C 

Supplementary material

41981_2015_5040197_MOESM1_ESM.pdf (150 kb)
Supplementary material, approximately 154 KB.


  1. 1.
    Hubenthal, F. Noble Metal Nanoparticles: Synthesis and Optical Properties. In Comprehensive Nanoscience and Technology, Wiederrecht, D. L. A. D. S. P., Ed.; Academic Press: Amsterdam, 2011; pp. 375–435.CrossRefGoogle Scholar
  2. 2.(a)
    Favilla, P. C.; Acosta, J. J.; Schvezov, C. E.; Sercovich, D. J.; Collet-Lacoste, J. R. Chem. Eng. Sci. 2013, 101, 27–34CrossRefGoogle Scholar
  3. 2.(b)
    Lee, P.-C.; Han, T.-H.; Kim, D. O.; Lee, J.-H.; Kang, S.-J.; Chung, C.-H.; Lee, Y.; Cho, S. M.; Choi, H.-G.; Kim, T.; Lee, E.; Nam, J.-D. J. Membr. Sci. 2008, 322, 441–445CrossRefGoogle Scholar
  4. 2.(c)
    Liu, X.; Yi, L.; Wang, X.; Su, J.; Song, Y.; Liu, J. Int. J. Hydrogen Energy 2012, 37, 17984–17991CrossRefGoogle Scholar
  5. 2.(d)
    Xia, G.; Huang, C.; Wang, Y. Int. J. Hydrogen Energy 2013, 38, 13754–13761CrossRefGoogle Scholar
  6. 2.(e)
    Zeng, L.; Zhao, T. S.; An, L.; Zhao, G.; Yan, X. H.; Jung, C. Y. J. Power Sources 2015, 275, 506–515CrossRefGoogle Scholar
  7. 2.(f)
    Kilic, M. S.; Korkut, S.; Hazer, B.; Erhan, E. Biosens. Bioelectron. 2014, 61, 500–505CrossRefGoogle Scholar
  8. 2.(g)
    Pasta, M.; Hu, L.; La Mantia, F.; Cui, Y. Electrochem. Commun. 2012, 19, 81–84CrossRefGoogle Scholar
  9. 2.(h)
    Pitois, A.; Pilenga, A.; Pfrang, A.; Tsotridis, G. Int. J. Hydrogen Energy 2011, 36, 4375–4385CrossRefGoogle Scholar
  10. 2.(i)
    Brandão, L.; Rodrigues, J.; Madeira, L. M.; Mendes, A. Int. J. Hydrogen Energy 2010, 35, 11561–11567CrossRefGoogle Scholar
  11. 2.(j)
    Ohara, S.; Hatakeyama, Y.; Umetsu, M.; Sato, K.; Naka, T.; Adschiri, T. J. Power Sources 2009, 193, 367–370.CrossRefGoogle Scholar
  12. 3.(a)
    Deng, H.-H.; Li, G.-W.; Hong, L.; Liu, A.-L.; Chen, W.; Lin, X.-H.; Xia, X.-H. Food Chem. 2014, 147, 257–261CrossRefGoogle Scholar
  13. 3.(b)
    Lazarus, N.; Jin, R.; Fedder, G. K. The use of coated gold nanoparticles in high performance chemical sensors. In Nanosensors for Chemical and Biological Applications, Honeychurch, K. C., Ed.; Woodhead Publishing: Cambridge, 2014; pp. 231–253CrossRefGoogle Scholar
  14. 3.(c)
    Yola, M. L.; Eren, T.; Atar, N. Sens. Actuators, B 2015, 210, 149–157CrossRefGoogle Scholar
  15. 3.(d)
    Zhou, Y.; Dong, H.; Liu, L.; Li, M.; Xiao, K.; Xu, M. Sens. Actuators, B 2014, 196, 106–111CrossRefGoogle Scholar
  16. 3.(e)
    Chen, J.; J.; Wang, M.; Li, Y. Sens. Actuators, B 2014, 201, 402–406CrossRefGoogle Scholar
  17. 3.(f)
    Park, D.-S.; Won, M.-S.; Goyal, R. N.; Shim, Y.-B. Sens. Actuators, B 2012, 174, 45–50CrossRefGoogle Scholar
  18. 3.(g)
    Wu, C.; Wu, K.-B. Chin. J. Anal. Chem. 2013, 41, 704–708CrossRefGoogle Scholar
  19. 3.(h)
    Singh, B.; Bhardwaj, N.; Jain, V. K.; Bhatia, V. Sens. Actuators, A 2014, 220, 126–133CrossRefGoogle Scholar
  20. 3.(i)
    Wu, G.-h.; Wu, Y.-f.; Liu, X.-w.; Rong, M.-c.; Chen, X.-m.; Chen, X. Anal. Chim. Acta 2012, 745, 33–37.CrossRefGoogle Scholar
  21. 4.(a)
    Kumar, A.; Zhang, X.; Liang, X.-J. Biotechnol. Adv. 2013, 31, 593–606CrossRefGoogle Scholar
  22. 4.(b)
    Tiwari, P. M.; Bawage, S. S.; Singh, S. R. Gold nanoparticles and their applications in photomedicine, diagnosis and therapy. In Applications of Nanoscience in Photomedicine, Hamblin, M. R.; Avci, P., Eds.; Chandos Publishing: Oxford, 2015; pp. 249–266CrossRefGoogle Scholar
  23. 4.(c)
    Lin, H.-C.; Wang, I. L.; Lin, H.-P.; Chang, T. C.; Lin, Y.-C. Sens. Actuators, B 2011, 154, 185–190CrossRefGoogle Scholar
  24. 4.(d)
    Moritz, M.; Geszke-Moritz, M. Chem. Eng. J. 2013, 228, 596–613CrossRefGoogle Scholar
  25. 4.(e)
    Chankeshwara, S. V.; Indrigo, E.; Bradley, M. Curr. Opin. Chem. Biol. 2014, 21, 128–135CrossRefGoogle Scholar
  26. 4.(f)
    Fang, C.; Fan, Y.; Kong, J. M.; Zhang, G. J.; Linn, L.; Rafeah, S. Sens. Actuators, B 2007, 126, 684–690.CrossRefGoogle Scholar
  27. 5.(a)
    Chen, X.; Zhu, H. Catalysis by Supported Gold Nanoparticles. In Comprehensive Nanoscience and Technology, Wiederrecht, D. L. A. D. S. P., Ed.; Academic Press: Amsterdam, 2011; pp. 1–11Google Scholar
  28. 5.(b)
    Guan, Y.; Song, W.; Hensen, E. J. M. Gold Clusters and Nanoparticles Stabilized by Nanoshaped Ceria in Catalysis. In Catalysis by Materials with Well-Defined Structures, Overbury, Z. W. H., Ed.; Elsevier: Amsterdam, 2015; pp. 99–132CrossRefGoogle Scholar
  29. 5.(c)
    Hutchings, G. J.; Edwards, J. K. Application of Gold Nanoparticles in Catalysis. In Frontiers of Nanoscience, Roy, L. J.; Wilcoxon, J. P., Eds.; Elsevier: Oxford, 2012; Vol. 3, pp. 249–293CrossRefGoogle Scholar
  30. 5.(d)
    Sreedhala, S.; Sudheeshkumar, V.; Vinod, C. P. Catal. Today 2015, 244, 177–183CrossRefGoogle Scholar
  31. 5.(e)
    Cao, J.; Yin, X.; Wang, L.; Guo, M.; Xu, J.; Chen, Z. Int. J. Hydrogen Energy 2015, 40, 2971–2978CrossRefGoogle Scholar
  32. 5.(f)
    Ghosh, A.; Stellacci, F.; Kumar, R. Catal. Today 2012, 198, 77–84CrossRefGoogle Scholar
  33. 5.(g)
    Pournara, A.; Kovala-Demertzi, D.; Kourkoumelis, N.; Georgakopoulos, S.; Kostas, I. D. Catal. Commun. 2014, 43, 57–60CrossRefGoogle Scholar
  34. 5.(h)
    Shan, S.; Luo, J.; Kang, N.; Wu, J.; Zhao, W.; Cronk, H.; Zhao, Y.; Skeete, Z.; Li, J.; Joseph, P.; Yan, S.; Zhong, C. J. Metallic nanoparticles for catalysis applications. In Modeling, Characterization, and Production of Nanomaterials, Zhang, V. K. T., Ed.; Woodhead Publishing: Cambridge, 2015; pp 253–288CrossRefGoogle Scholar
  35. 5.(i)
    Gómez-Martínez, M.; Buxaderas, E.; Pastor, I. M.; D. A. J. Mol. Catal. A: Chem. 2015, 404–405, 1–7Google Scholar
  36. 5.(j)
    Magdesieva, T. V.; Nikitin, O. M.; Zolotukhina, E. V.; Vorotyntsev, M. A. Electrochim. Acta 2014, 122, 289–295CrossRefGoogle Scholar
  37. 5.(k)
    Ncube, P.; Bingwa, N.; Baloyi, H.; Meijboom, R. Appl. Catal., A 2015, 495, 63–71CrossRefGoogle Scholar
  38. 5.(l)
    Petrucci, C.; Cappelletti, M.; Piermatti, O.; Nocchetti, M.; Pica, M.; Pizzo, F.; Vaccaro, L. J. Mol. Catal. A: Chem. 2015, 401, 27–34.CrossRefGoogle Scholar
  39. 6.
    Lee, Y.-W.; Lee, J.-Y.; Kwak, D.-H.; Hwang, E.-T.; Sohn, J. I.; Park, K.-W. Appl. Catal., B 2015, 179, 178–184.CrossRefGoogle Scholar
  40. 7.(a)
    Li, X.; Li, B.; Cheng, M.; Du, Y.; Wang, X.; Yang, P. J. Mol. Catal. A: Chem. 2008, 284, 1–7CrossRefGoogle Scholar
  41. 7.(b)
    Sterchele, S.; Biasi, P.; Centomo, P.; Canton, P.; Campestrini, S.; Salmi, T.; Zecca, M. Appl. Catal., A 2013, 468, 160–174CrossRefGoogle Scholar
  42. 7.(c)
    Wu, K.; Zhang, Q.; Sun, D.; Zhu, X.; Chen, Y.; Lu, T.; Tang, Y. Int. J. Hydrogen Energy 2015, 40, 6530–6537CrossRefGoogle Scholar
  43. 7.(d)
    Wang, H.; Wang, C.; Yan, H.; Yi, H.; Lu, J. J. Catal. 2015, 324, 59–68.CrossRefGoogle Scholar
  44. 8.(a)
    Kuhn, M.; Jeschke, J.; Schulze, S.; Hietschold, M.; Lang, H.; Schwarz, T. Catal. Commun. 2014, 57, 78–82CrossRefGoogle Scholar
  45. 8.(b)
    Zhan, G.; Huang, J.; Du, M.; Abdul-Rauf, Li, Q. Mater. Lett. 2011, 65, 2989–2991.CrossRefGoogle Scholar
  46. 9.(a)
    Hu, J.-W.; Zhang, Y.; Li, J.-F.; Liu, Z.; Ren, B.; Sun, S.-G.; Tian, Z.-Q.; Lian, T. Chem. Phys. Lett. 2005, 408, 354–359CrossRefGoogle Scholar
  47. 9.(b)
    Zhou, J.; T.; Li, H.; Cui, Y.; Hu, J. Chem. Phys. Lett. 2015, 628, 91–95.CrossRefGoogle Scholar
  48. 10.(a)
    Ohkubo, Y.; Shibata, M.; Kageyama, S.; Seino, S.; Nakagawa, T.; Kugai, J.; Yamamoto, T. A. Mater. Lett. 2011, 65, 2165–2167CrossRefGoogle Scholar
  49. 10.(b)
    Taguchi, N.; Iwase, A.; Maeda, N.; Kojima, T.; Taniguchi, R.; Okuda, S.; Akita, T.; Abe, T.; Kambara, T.; Ryuto, H.; Hori, F. Radiat. Phys. Chem. 2009, 78, 1049–1053.CrossRefGoogle Scholar
  50. 11.(a)
    Knauer, A.; Thete, A.; Li, S.; Romanus, H.; Csáki, A.; Fritzsche, W.; Köhler, J. M. Chem. Eng. J. 2011, 166, 1164–1169CrossRefGoogle Scholar
  51. 11.(b)
    Zhao, C.-X.; He, L.; Qiao, S. Z.; Middelberg, A. P. J. Chem. Eng. Sci. 2011, 66, 1463–1479.CrossRefGoogle Scholar
  52. 12.(a)
    Kraus, I.; Li, S.; Knauer, A.; Schmutz, M.; Faerber, J.; Serra, C. A.; Köhler, M. J. Flow Chem. 2014, 4, 72–78CrossRefGoogle Scholar
  53. 12.(b)
    Dencic, I.; Meuldijk, J.; Croon, M.; Hessel, V. J. Flow Chem. 2012, 1, 13–23.CrossRefGoogle Scholar
  54. 13.
    Kumar, S.; Shibu, E. S.; Pradeep, T.; Sood, A. K. Opt. Express 2013, 21, 8483–8492.CrossRefGoogle Scholar
  55. 14.(a)
    Lemma, K.; House, D. A.; Retta, N.; Elding, L. I. Inorg. Chim. Acta 2002, 331, 98–108CrossRefGoogle Scholar
  56. 14.(b)
    Stavila, V.; Volponi, J.; Katzenmeyer, A. M.; Dixon, M. C.; Allendorf, M. D. Chem. Sci. 2012, 3, 1531–1540.CrossRefGoogle Scholar
  57. 15.
    Luty-Blocho, M.; Paclawski, K.; Wojnicki, M.; Fitzner, K. Inorg. Chim. Acta 2013, 395, 189–196.CrossRefGoogle Scholar
  58. 16.
    Wojnicki, M.; Paclawski, K.; Socha, R. P.; Fitzner, K. Trans. Nonferrous Met. Soc. China 2013, 23, 1147–1156.CrossRefGoogle Scholar
  59. 17.
    Wojnicki, M.; Rudnik, E.; Luty-Blocho, M.; Paclawski, K.; Fitzner, K. Hydrometallurgy 2012, 127–128, 45–53.Google Scholar
  60. 18.
    Luty-Blocho, M.; Wojnicki, M.; Grzonka, J.; Kurzydlowski, K. J. Arch. Metall. Mater. 2014, 59, 509–512.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyFaculty of Non-Ferrous MetalsKrakowPoland

Personalised recommendations