Journal of Flow Chemistry

, Volume 5, Issue 3, pp 183–189 | Cite as

Moffat-Swern Oxidation of Alcohols: Translating a Batch Reaction to a Continuous-Flow Reaction

  • Olav Bleie
  • Michael F. Roberto
  • Thomas I. Dearing
  • Charles W. Branham
  • Olav M. Kvalheim
  • Brian J. Marquardt
Full Paper


The Moffatt-Swern oxidation (MSO) is a multistep, versatile, metal-free reaction by which alcohols are transformed into aldehydes and ketones. Batch MSO requires low temperatures (−70 °C) due to a highly exothermic reaction step that generates intermediates. This work shows that a rigorous investigation of the MSO in batch can be used as a stepping-stone to its implementation in a continuous-flow reactor (CFR). This work has two parts: the first part details the investigation of MSO in batch; the second covers the translation of the knowledge derived from batch to a CFR. The MSO batch reaction was performed under cryogenic conditions with real-time process monitoring. The reaction was monitored with Raman spectroscopy and could be tracked throughout the reaction. All concentrations were validated using offline high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). Two configurations of the CFR were produced. Configuration 1 used the traditional batch methodology in terms of reagent addition and reaction conditions. Configuration 2 used the information derived from the batch reaction, changing the order of the reagent addition and increasing the temperature of the reactor. Real-time quantitative monitoring of chemical yield in the CFR was demonstrated via Raman spectroscopy and partial least squares (PLS) regression modeling. Reaction yield was accurately predicted every 15 s, reducing the need for chromatographic validation once the model was built. Configuration 2 was shown to perform comparably to configuration 1 at low temperature and far outperforming it at higher temperatures. Both CFR configurations performed significantly better than the batch setup in terms of temperature and yield, as was expected.


batch continuous flow Raman spectroscopy partial least squares real-time process monitoring PAT cryogenic 


  1. 1.
    Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles Instrumental Analysis; Thomson Brooks/Cole: Pacific Grove, 2006.Google Scholar
  2. 2.
    Watts, P.; Wiles, C. Chem. Commu. 2007, 443–467.Google Scholar
  3. 3.
    Roberge, D. M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Chem. Eng. Technol. 2005, 28, 318–323.CrossRefGoogle Scholar
  4. 4.
    Roberge, D. M.; Bieler, N.; Mathier, M.; Eyholzer, M.; Zimmermann, B.; Barthe, P.; Guermeur, C.; Lobet, O.; Moreno, M.; Woehl, P. Chem. Eng. Technol. 2008, 31, 1155–1161.CrossRefGoogle Scholar
  5. 5.
    Roberge, D. M.; Zimmermann, B.; Rainone, F.; Gottsponer, M.; Eyholzer, M.; Kockmann, N. Org. Process Res. Dev. 2008, 12, 905–910.CrossRefGoogle Scholar
  6. 6.
    Basheer, C.; Shahitha, F.; Hussain, J.; Lee, H. K.; Valiyaveettil, S. Tetrahedron Lett. 2004, 45, 7297–7300.CrossRefGoogle Scholar
  7. 7.
    Knothe, G. J. Am. Oil Chem. Soc. 1999, 76, 795–800.CrossRefGoogle Scholar
  8. 8.
    Kim, J.; Han, J.; Noh, J.; Chung, H. Appl. Spectrosc. 2007, 61, 686–693.CrossRefGoogle Scholar
  9. 9.
    Cooper, J. B.; Wise, K. L.; Welch, W. T.; Sumner, M. B.; Wilt, B. K.; Bledsoe, R. R. Appl. Spectrosc. 1997, 51, 1613–1620.CrossRefGoogle Scholar
  10. 10.
    Workman, J. J. Appl. Spectrosc. Rev., 1996, 31, 251–320.Google Scholar
  11. 11.
    Santos, V. O.; Oliveira, F. C. C.; Lima, D. G.; Petry, A. C.; Garcia, E.; Suarez, P. A. Z.; Rubim, J. C. Anal. Chim. Acta 2005, 547, 188–196.CrossRefGoogle Scholar
  12. 12.
    De Beer, T. R. M.; Vergote, G. J.; Baeyens, W. R. G.; Remon, J. P.; Vervaet, C.; Verpoort, F. European J. Pharm. Sci. 2004, 23, 355–362.CrossRefGoogle Scholar
  13. 13.
    Vergote, G. J.; De Beer, T. R. M.; Vervaet, C.; Remon, J. P.; Baeyens, W. R. G.; Diericx, N.; Verpoort, F. European J. Pharm. Sci. 2004, 21, 479–485.CrossRefGoogle Scholar
  14. 14.
    Reich, G. Adv. Drug Delivery Rev. 2005, 57, 1109–1143.CrossRefGoogle Scholar
  15. 15.
    Leung, S. A.; Winkle, R. F.; Wootton, R. C. R.; deMello, A. J. Analyst 2005, 130, 46–51.CrossRefGoogle Scholar
  16. 16.
    Mozharov, S.; Nordon, A.; Littlejohn, D.; Wiles, C.; Watts, P.; Dallin, P.; Girkin, J. M. J. Am. Chem. Soc. 2011, 133, 3601–3608.CrossRefGoogle Scholar
  17. 17.
    Cao, E.; Sankar, M.; Firth, S.; Lam, K. F.; Bethell, D.; Knight, D. K.; Hutchings, G. J.; McMillan, P. F.; Gavriilidis, A. Chem. Eng. J. 2011, 167, 734–743.CrossRefGoogle Scholar
  18. 18.
    Mechtilde, S.; Eduard, S.; Andreas, F. J. Phys. Conf. Ser. 2006, 28, 115–118.CrossRefGoogle Scholar
  19. 19.
    Barthus, R. C.; Poppi, R. J. Vib. Spectrosc. 2001, 26, 99–105.CrossRefGoogle Scholar
  20. 20.
    Pelletier, M. J.; Fabiilli, M. L.; Moon, B. Appl. Spectrosc. 2007, 61, 1107–1115.CrossRefGoogle Scholar
  21. 21.
    Misra, M.; Yue, H. H.; Qin, S. J.; Ling, C. Comput. Chem. Eng. 2002, 26, 1281–1293.CrossRefGoogle Scholar
  22. 22.
    Chen, J.; Liu, K.-C. Chem. Eng. Sci. 2002, 57, 63–75.CrossRefGoogle Scholar
  23. 23.
    Thomas, E. V. Anal. Chem. 1994, 66, 795A–804A.CrossRefGoogle Scholar
  24. 24.
    Cooper, J. B.; Wise, K. L.; Groves, J.; Welch, W. T. Anal. Chem. 1995, 67, 4096–4100.CrossRefGoogle Scholar
  25. 25.
    Dearing, T. I.; Thompson, W. J.; Rechsteiner, C. E., Jr.; Marquardt, B. J. Appl. Spectrosc. 2011, 65, 181–186.CrossRefGoogle Scholar
  26. 26.
    Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651–1660.CrossRefGoogle Scholar
  27. 27.
    Albright, J. D.; Goldman, L. J. Am. Chem. Soc. 1965, 87, 4214–4216.CrossRefGoogle Scholar
  28. 28.
    Omura, K.; Sharma, A. K.; Swern, D. J. Org. Chem. 1976, 41, 957–962.CrossRefGoogle Scholar
  29. 29.
    Tidwell, T. T. Synthesis 1990, 857–870.Google Scholar
  30. 30.
    Kawaguchi, T.; Miyata, H.; Ataka, K.; Mae, K.; Yoshida, J. I. Angew. Chem., Int. Ed. 2005, 44, 2413–2416.CrossRefGoogle Scholar
  31. 31.
    van der Linden, J. J.; Hilberink, P. W.; Kronenburg, C. M.; Kemperman, G. J. Org. Process Res. Dev. 2008, 12, 911–920.CrossRefGoogle Scholar
  32. 32.
    Roberto, M. F.; Dearing, T. I.; Branham, C. W.; Bleie, O.; Marquardt, B. J. Processes 2014, 2, 24–33.CrossRefGoogle Scholar
  33. 33.
    Martens, H.; Næs, T. Multivariate Calibration; John Wiley & Sons: Chichester, 1992.Google Scholar
  34. 34.
    Wold, S.; Trygg, J.; Berglund, A.; Antti, H. Chemom. Intell. Lab. Syst. 2001, 58, 131–150.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  • Olav Bleie
    • 1
    • 2
  • Michael F. Roberto
    • 3
  • Thomas I. Dearing
    • 4
  • Charles W. Branham
    • 5
  • Olav M. Kvalheim
    • 2
  • Brian J. Marquardt
    • 4
  1. 1.Department of ChemistryUniversity of BergenBergenNorway
  2. 2.PorsgrunnNorway
  3. 3.Infometrix, Inc.BothellUSA
  4. 4.MarqMetrix Inc.SeattleUSA
  5. 5.Applied Physics LaboratoryUniversity of WashingtonSeattleUSA

Personalised recommendations