Journal of Flow Chemistry

, Volume 5, Issue 4, pp 234–240 | Cite as

Easy-to-Assemble and Adjustable Coaxial Flow-Focusing Microfluidic Device for Generating Controllable Water/Oil/Water Double Emulsions: Toward Templating Giant Liposomes with Different Properties

Full Paper


Herein, an optimized microfluidic device for manufacturing encapsulating water-in-oil-in-water (w/o/w) double emulsions is reported. The adjustability of the microfluidic device allows on-demand formation of oil shells with different thicknesses during the w/o/w double emulsion formation while maintaining the same core size. This was achieved by manipulation of the separation distance between the cylindrical tubes constituting the flow-focusing part of the device, the middle flow rate of the middle phase, and the outer flow rate of the continuous phase, all at the same time. By incorporating lipids in the oil shell, the w/o/w double emulsions serve as templates for the formation of monodisperse encapsulating liposomes. Thus, liposomes with different shell properties can be generated after evaporation of the oil that can be collected either separately or pooled together in a single sample batch using only one experimental step. The w/o/w double emulsions are highly monodisperse, generated with a throughput of more than 10 Hz, having water core diameters ranging from 130 to 290 μm and different oil shell thicknesses varying from 5 to 13 μm. Moreover, double emulsions with diameters down to 10 μm are reported; however, at this size, the dispersity is less controllable. The microfluidic device is composed of commercially available parts with only minor modifications required, thus, facilitating the manufacturing of encapsulating w/o/w double emulsions.


water/oil/water double emulsions 

Supplementary material

41981_2015_5040234_MOESM1_ESM.pdf (351 kb)
Supplementary material, approximately 359 KB.


  1. 1.
    Blain, J. C.; Szostak, J. W. Annu. Rev. Biochem. 2014, 83, 615–640.CrossRefGoogle Scholar
  2. 2.
    Zagnoni, M. Lab Chip 2012, 12, 1026–1039.CrossRefGoogle Scholar
  3. 3.
    Matosevic, S. Bioessays 2012, 34, 992–1001.CrossRefGoogle Scholar
  4. 4.
    Karamdad, K.; Law, R. V.; Seddon, J. M.; Brooks, N. J.; Ces, O. Lab Chip 2015.Google Scholar
  5. 5.
    Arriaga, L. R.; Datta, S. S.; Kim, S.-H.; Amstad, E.; Kodger, T. E.; Monroy, F.; Weitz, D. A. Small 2014, 10, 950–956.CrossRefGoogle Scholar
  6. 6.
    Ikonen, E. Curr. Opin. Cell Biol. 2001, 13, 470–477.CrossRefGoogle Scholar
  7. 7.
    Stano, P.; Carrara, P.; Kuruma, Y.; Pereira de Souza, T.; Luisi, P. L. J. Mater. Chem. 2011, 21, 18887–18902.CrossRefGoogle Scholar
  8. 8.
    Allen, T. M.; Cullis, P. R. Adv. Drug Deliver Rev. 2013, 65, 36–48.CrossRefGoogle Scholar
  9. 9.
    Herranz-Blanco, B.; Arriaga, L. R.; Makila, E.; Correia, A.; Shrestha, N.; Mirza, S.; Weitz, D. A.; Salonen, J.; Hirvonen, J.; Santos, H. A. Lab Chip 2014, 14, 1083–1086.CrossRefGoogle Scholar
  10. 10.
    Kong, F.; Zhang, X.; Hai, M. Langmuir 2014, 30, 3905–3912.CrossRefGoogle Scholar
  11. 11.
    Skeie, S. Int. Dairy J. 1994, 4, 573–595.CrossRefGoogle Scholar
  12. 12.
    Rodriguez, N.; Pincet, F.; Cribier, S. Colloids Surf B. 2005, 42, 125–130.CrossRefGoogle Scholar
  13. 13.
    Angelova, M. I.; Dimitrov, D. S. Faraday Discuss. Chem. Soc. 1986, 81, 303–311.CrossRefGoogle Scholar
  14. 14.
    Mathivet, L.; Cribier, S.; Devaux, P. F. Biophys. J. 1996, 70, 1112–1121.CrossRefGoogle Scholar
  15. 15.
    Hope, M. J.; Bally, M. B.; Webb, G.; Cullis, P. R. Biochim. Biophys. Acta 1985, 812, 55–65.CrossRefGoogle Scholar
  16. 16.
    Darszon, A.; Vandenberg, C. A.; Schönfeld, M.; Ellisman, M. H.; Spitzer, N. C.; Montal, M. Proc. Natl. Acad. Sci. 1980, 77, 239–243.CrossRefGoogle Scholar
  17. 17.
    Funakoshi, K.; Suzuki, H.; Takeuchi, S. J. Am. Chem. Soc. 2007, 129, 12608–12609.CrossRefGoogle Scholar
  18. 18.
    Stachowiak, J. C.; Richmond, D. L.; Li, T. H.; Brochard-Wyart, F.; Fletcher, D. A. Lab Chip 2009, 9, 2003–2009.CrossRefGoogle Scholar
  19. 19.
    Xia, Y.; Whitesides, G. M. Annu. Rev. Mater. Sci. 1998, 28, 153–184.CrossRefGoogle Scholar
  20. 20.
    Rossi, F.; Budroni, M. A.; Marchettini, N.; Cutietta, L.; Rustici, M.; Liveri, M. L. T. Chem. Phys. Lett. 2009, 480, 322–326.CrossRefGoogle Scholar
  21. 21.
    Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A. Science 2005, 308, 537–541.CrossRefGoogle Scholar
  22. 22.
    Shum, H. C.; Lee, D.; Yoon, I.; Kodger, T.; Weitz, D. A. Langmuir 2008, 24, 7651–7653.CrossRefGoogle Scholar
  23. 23.
    Kim, S.-H.; Kim, J. W.; Cho, J.-C.; Weitz, D. A. Lab Chip 2011, 11, 3162–3166.CrossRefGoogle Scholar
  24. 24.
    Foster, T.; Dorfman, K. D.; Ted Davis, H. J. Colloid Interface Sci. 2010, 351, 140–150.CrossRefGoogle Scholar
  25. 25.
    Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418–2421.CrossRefGoogle Scholar
  26. 26.
    Nishimura, K.; Suzuki, H.; Toyota, T.; Yomo, T. J. Colloid Interface Sci. 2012, 376, 119–125.CrossRefGoogle Scholar
  27. 27.
    Benson, B. R.; Stone, H. A.; Prud homme, R. K. Lab Chip 2013, 13, 4507–4511.CrossRefGoogle Scholar
  28. 28.
    Shang, L.; Cheng, Y.; Wang, J.; Ding, H.; Rong, F.; Zhao, Y.; Gu, Z. Lab Chip 2014, 14, 3489–3493.CrossRefGoogle Scholar
  29. 29.
    Duncanson, W. J.; Lin, T.; Abate, A. R.; Seiffert, S.; Shah, R. K.; Weitz, D. A. Lab Chip 2012, 12, 2135–2145.CrossRefGoogle Scholar
  30. 30.
    Tomasi, R.; Noel, J.-M.; Zenati, A.; Ristori, S.; Rossi, F.; Cabuil, V.; Kanoufi, F.; Abou-Hassan, A. Chem. Sci. 2014, 5, 1854–1859.CrossRefGoogle Scholar
  31. 31.
    Walde, P.; Cosentino, K.; Engel, H.; Stano, P. Chembiochem 2010, 11, 848–865.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  1. 1.Sorbonne UniversitésUPMC Université Paris 06, Laboratoire Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), UMR 8234, équipe Colloïdes InorganiquesParis Cedex 05France

Personalised recommendations