Journal of Flow Chemistry

, Volume 5, Issue 4, pp 228–233 | Cite as

Influence of the Au/Ag Ratio on the Catalytic Activity of Dendrimer-Encapsulated Bimetallic Nanoparticles in Microreactors

  • Roberto Ricciardi
  • Jurriaan Huskens
  • Willem Verboom
Full Paper


Dendrimer-encapsulated Au/Ag alloy nanoparticles (Au/Ag DENs) were covalently attached to a monolayer-functionalized inner surface of glass microreactors. The influence of the bimetallic alloy structure and of the different metal ratios was investigated for the reduction of 4-nitrophenol using NaBH4. TheAu/Ag-dendrimer nanocomposite with a 1:1 Au/Ag metal ratio showed the highest activity as compared to other metal ratios and to pure Ag and Au. The dendrimer template exerted a stabilizing effect for six consecutive days of use with almost no decrease in conversion. This strategy enables the screening and investigation of a variety of bimetallic nanocatalysts in continuous-flow microreactors.


flow microreactors nanoparticles heterogeneous catalysis reductions nanoalloys 

Supplementary material

41981_2015_5040228_MOESM1_ESM.pdf (126 kb)
Supplementary material, approximately 129 KB.


  1. 1.(a)
    Notar Francesco, I.; Fontaine-Vive, F.; Antoniotti, S. ChemCatChem 2014, 6, 2784–2791CrossRefGoogle Scholar
  2. 1.(b)
    Singh, A. K.; Xu, Q. ChemCatChem 2013, 5, 652–676CrossRefGoogle Scholar
  3. 1.(c)
    Shan, S.; Luo, J.; Yang, L.; Zhong, C.-J. Catal. Sci. Technol. 2014, 4, 3570–3588CrossRefGoogle Scholar
  4. 1.(d)
    Tao, F. Chem. Soc. Rev. 2012, 41, 7977–7979.CrossRefGoogle Scholar
  5. 2.
    Dai, Y.; Wang, Y.; Liu, B.; Yang, Y. Small 2015, 11, 268–289.CrossRefGoogle Scholar
  6. 3.(a)
    Kalidindi, S. B.; Jagirdar, B. R. ChemSusChem 2012, 5, 65–75CrossRefGoogle Scholar
  7. 3.(b)
    Polshettiwar, V.; Varma, R. S. Green Chem. 2010, 12, 743–754.CrossRefGoogle Scholar
  8. 4.(a)
    Sankar, M.; Dimitratos, N.; Miedziak, P. J.; Wells, P. P.; Kiely, C. J.; Hutchings, G. J. Chem. Soc. Rev. 2012, 41, 8099–8139CrossRefGoogle Scholar
  9. 4.(b)
    Gao, F.; Goodman, D.W. Chem. Soc. Rev. 2012, 41, 8009–8020.CrossRefGoogle Scholar
  10. 5.
    Ferrando, R.; Jellinek, J.; Johnston, R. L. Chem. Rev. 2008, 108, 845–910.CrossRefGoogle Scholar
  11. 6.
    Jiang, H.-L.; Xu, Q. J. Mater. Chem. 2011, 21, 13705–13725.CrossRefGoogle Scholar
  12. 7.
    Na, K.; Zhang, Q.; Somorjai, G. J. Clust. Sci. 2014, 25, 83–114.CrossRefGoogle Scholar
  13. 8.(a)
    Myers, V. S.; Weir, M. G.; Carino, E. V.; Yancey, D. F.; Pande, S.; Crooks, R. M. Chem. Sci. 2011, 2, 1632–1646CrossRefGoogle Scholar
  14. 8.(b)
    Astruc, D.; Boisselier, E.; Ornelas, C. Chem. Rev. 2010, 110, 1857–1959.CrossRefGoogle Scholar
  15. 9.(a)
    Chandler, B.; Gilbertson, J. In Dendrimer Catalysis; Gade, L., Ed.; Springer Berlin Heidelberg, 2006; Vol. 20, pp. 97–120Google Scholar
  16. 9.(b)
    Peng, X.; Pan, Q.; Rempel, G. L. Chem. Soc. Rev. 2008, 37, 1619–1628.CrossRefGoogle Scholar
  17. 10.(a)
    Scott, R. W. J.; Wilson, O. M.; Oh, S.-K.; Kenik, E. A.; Crooks, R. M. J. Am. Chem. Soc. 2004, 126, 15583–15591CrossRefGoogle Scholar
  18. 10.(b)
    Scott, R. W. J.; Sivadinarayana, C.; Wilson, O. M.; Yan, Z.; Goodman, D. W.; Crooks, R. M. J. Am. Chem. Soc. 2005, 127, 1380–1381CrossRefGoogle Scholar
  19. 10.(c)
    Peng, X.; Pan, Q.; Rempel, G. L.; Wu, S. Catal. Commun. 2009, 11, 62–66.CrossRefGoogle Scholar
  20. 11.(a)
    Zhang, Y. T.; Arancon, R. A. D.; Lam, L. Y. F.; Luque, R. Chem. Today 2014, 32, 36–39Google Scholar
  21. 11.(b)
    Obermayer, D.; Balu, A. M.; Romero, A. A.; Goessler, W.; Luque, R.; Kappe, C. O. Green Chem. 2013, 15, 1530–1537CrossRefGoogle Scholar
  22. 11.(c)
    Gross, E.; LiuJack, H.-C.; Toste, F. D.; Somorjai, G. A. Nat. Chem. 2012, 4, 947–952.CrossRefGoogle Scholar
  23. 12.(a)
    Rebrov, E. V.; Klinger, E. A.; Berenguer-Murcia, A.; Sulman, E. M.; Schouten, J. C. Org. Process Res. Dev. 2009, 13, 991–998CrossRefGoogle Scholar
  24. 12.(b)
    Mimura, N.; Hiyoshi, N.; Fujitani, T.; Dumeignil, F. RSC Adv. 2014, 4, 33416–33423CrossRefGoogle Scholar
  25. 12.(c)
    Moitra, N.; Kanamori, K.; Ikuhara, Y. H.; Gao, X.; Zhu, Y.; Hasegawa, G.; Takeda, K.; Shimada, T.; Nakanishi, K. J. Mater. Chem. A 2014, 2, 12535–12544.CrossRefGoogle Scholar
  26. 13.(a)
    Munirathinam, R.; Huskens, J.; Verboom, W. Adv. Synth. Cat. 2015, 357, 1093–1123CrossRefGoogle Scholar
  27. 13.(b)
    Wiles, C.; Watts, P. Green Chem. 2014, 16, 55–62CrossRefGoogle Scholar
  28. 13.(c)
    Elvira, K. S.; i Solvas, X. C.; Wootton, R. C. R.; deMello, A. J. Nat. Chem. 2013, 5, 905–915CrossRefGoogle Scholar
  29. 13.(d)
    Newman, S. G.; Jensen, K. F. Green Chem. 2013, 15, 1456–1472CrossRefGoogle Scholar
  30. 13.(e)
    Xu, B.-B.; Zhang, Y.-L.; Wei, S.; Ding, H.; Sun, H.-B. ChemCatChem 2013, 5, 2091–2099CrossRefGoogle Scholar
  31. 13.(f)
    Frost, C. G.; Mutton, L. Green Chem. 2010, 12, 1687–1703.CrossRefGoogle Scholar
  32. 14.
    Ricciardi, R.; Huskens, J.; Holtkamp, M.; Karst, U.; Verboom, W. ChemCatChem 2015, 7, 936–942.CrossRefGoogle Scholar
  33. 15.
    Ricciardi, R.; Huskens, J.; Verboom, W. Org. Biomol. Chem. 2015, 13, 4953–4959.CrossRefGoogle Scholar
  34. 16.
    Ludden, M. J. W.; Ling, X. Y.; Gang, T.; Bula, W. P.; Gardeniers, H. J. G. E.; Reinhoudt, D. N.; Huskens, J. Chem. Eur. J. 2008, 14, 136–142.CrossRefGoogle Scholar
  35. 17.
    Endo, T.; Yoshimura, T.; Esumi, K. J. Colloid Interface Sci. 2005, 286, 602–609.CrossRefGoogle Scholar
  36. 18.(a)
    Wilson, O. M.; Scott, R. W. J.; Garcia-Martinez, J. C.; Crooks, R. M. J. Am. Chem. Soc. 2004, 127, 1015–1024CrossRefGoogle Scholar
  37. 18.(b)
    Link, S.; Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3529–3533.CrossRefGoogle Scholar
  38. 19.
    Mallin, M. P.; Murphy, C. J. Nano Lett. 2002, 2, 1235–1237.CrossRefGoogle Scholar
  39. 20.
    Chung, Y.-M.; Rhee, H.-K. Catal. Lett. 2003, 85, 159–164.CrossRefGoogle Scholar
  40. 21.(a)
    Davey, W. P. Phys. Rev. 1925, 25, 753–761CrossRefGoogle Scholar
  41. 21.(b)
    Shin, Y.; Bae, I.-T.; Arey, B. W.; Exarhos, G. J. J. Phys. Chem. C 2008, 112, 4844–4848.CrossRefGoogle Scholar
  42. 22.(a)
    Wunder, S.; Lu, Y.; Albrecht, M.; Ballauff, M. ACS Catal. 2011, 1, 908–916CrossRefGoogle Scholar
  43. 22.(b)
    Esumi, K.; Miyamoto, K.; Yoshimura, T. J. Colloid Interface Sci. 2002, 254, 402–405CrossRefGoogle Scholar
  44. 22.(c)
    Pozun, Z. D.; Rodenbusch, S. E.; Keller, E.; Tran, K.; Tang, W.; Stevenson, K. J.; Henkelman, G. J. Phys. Chem. C 2013, 117, 7598–7604.CrossRefGoogle Scholar
  45. 23.(a)
    Lee, J.; Park, J. C.; Song, H. Adv. Mater. 2008, 20, 1523–1528CrossRefGoogle Scholar
  46. 23.(b)
    Panigrahi, S.; Basu, S.; Praharaj, S.; Pande, S.; Jana, S.; Pal, A.; Ghosh, S. K.; Pal, T. J. Phys. Chem. C 2007, 111, 4596–4605.CrossRefGoogle Scholar
  47. 24.
    Liu, P.; Norskov, J. K. Phys. Chem. Chem. Phys. 2001, 3, 3814–3818.CrossRefGoogle Scholar
  48. 25.(a)
    Deraedt, C.; Salmon, L.; Astruc, D. Adv. Synth. Cat. 2014, 356, 2525–2538CrossRefGoogle Scholar
  49. 25.(b)
    Holden, M. S.; Nick, K. E.; Hall, M.; Milligan, J. R.; Chen, Q.; Perry, C.C. RSC Adv. 2014, 4, 52279–52288.CrossRefGoogle Scholar
  50. 26.(a)
    An, Q.; Yu, M.; Zhang, Y.; Ma, W.; Guo, J.; Wang, C. J. Phys. Chem. C 2012, 116, 22432–22440CrossRefGoogle Scholar
  51. 26.(b)
    Jiang, H.-L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 1304–1306.CrossRefGoogle Scholar
  52. 27.
    Costantini, F.; Benetti, E. M.; Tiggelaar, R. M.; Gardeniers, H.; Reinhoudt, D. N.; Huskens, J.; Vancso, G. J.; Verboom, W. Chem. Eur. J. 2010, 16, 12406–12411.CrossRefGoogle Scholar
  53. 28.(a)
    Xia, B.; He, F.; Li, L. Langmuir 2013, 29, 4901–4907CrossRefGoogle Scholar
  54. 28.(b)
    Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. J. Phys. Chem. C 2010, 114, 8814–8820.CrossRefGoogle Scholar
  55. 29.
    Xu, W.; Kong, J. S.; Chen, P. J. Phys. Chem. C 2009, 113, 2393–2404.CrossRefGoogle Scholar
  56. 30.
    Antonels, N. C.; Meijboom, R. Langmuir 2013, 29, 13433–13442.CrossRefGoogle Scholar
  57. 31.
    Esumi, K.; Isono, R.; Yoshimura, T. Langmuir 2003, 20, 237–243.CrossRefGoogle Scholar
  58. 32.
    Li, Y.; Liu, J. H.-C.; Witham, C. A.; Huang, W.; Marcus, M. A.; Fakra, S. C.; Alayoglu, P.; Zhu, Z.; Thompson, C. M.; Arjun, A.; Lee, K.; Gross, E.; Toste, F. D.; Somorjai, G. A. J. Am. Chem. Soc. 2011, 133, 13527–13533.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  • Roberto Ricciardi
    • 1
  • Jurriaan Huskens
    • 1
  • Willem Verboom
    • 1
  1. 1.Laboratory of Molecular Nanofabrication, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeNetherlands

Personalised recommendations