Journal of Flow Chemistry

, Volume 5, Issue 3, pp 178–182 | Cite as

Microreactor Flow Synthesis of the Secondary High Explosive 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105)

  • Nathaniel B. Zuckerman
  • Maxim Shusteff
  • Philip F. Pagoria
  • Alexander E. Gash
Full Paper


The secondary high explosive 2,6-diamino-3,5-dinitropyrazine-1-oxide, or LLM-105, has been synthesized using a commercially available flow microreactor system. Investigations focused on optimizing flow nitration conditions of the cost effective 2,6-diaminopyrazine-1-oxide (DAPO) in order to test the feasibility and viability of flow nitration as a means for the continuous synthesis of LLM-105. The typical benefits of microreactor flow synthesis including safety, tight temperature control, decreased reaction time, and improved product purity all appear to be highly relevant in the synthesis of LLM-105. However, the process does not provide any gains in yield, as the typical 50–60% yields are equivalent to the batch process. A key factor in producing pure LLM-105 lies in the ability to eliminate any acid inclusions in the final crystalline material through both a controlled quench and recrystallization. The optimized flow nitration conditions, multigram scale-up results, analyses of sample purity, and quenching conditions for purity and crystal morphology are reported.


flow nitration microreactor energetic materials LLM-105 

Supplementary material

41981_2015_5030178_MOESM1_ESM.pdf (11.1 mb)
Supplementary material, approximately 11676 KB.


  1. 1.
    Agrawal, J. P.; Hodgson, R. D. Organic Chemistry of Explosives; John Wiley & Sons, Ltd.: England, 2007; p. 349.Google Scholar
  2. 2.
    Olah, G. A.; Prakash, G. K. S.; Wang, Q.; Li, X. Nitronium Tetrafluor-oborate. E-EROS Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Ltd.: online, 2001.Google Scholar
  3. 3.
    Kockmann, N.; Roberge, D. M. Chem Eng. Technol 2009, 32, 1682–1694.CrossRefGoogle Scholar
  4. 4.
    Stoessel, F. Thermal Safety of Chemical Processes: Risk Assessment and Process Design; Wiley-VCH: Weinheim, 2008.CrossRefGoogle Scholar
  5. 5.
    Kulkarni, A. A. Beilstein J. Org. Chem. 2014, 10, 405–424.CrossRefGoogle Scholar
  6. 6.
    Elvira, K. S.; Casadevall i Solvas, X.; Wootton, R. C. R.; deMello, A. J. Nat. Chem. 2013, 5, 905–915.CrossRefGoogle Scholar
  7. 7.
    Hessel, V.; Kralisch, D.; Kockmann, N.; Noël, T.; Wang, Q. ChemSusChem 2013, 6, 746–789.CrossRefGoogle Scholar
  8. 8.
    Antes, J.; Boskovic, D.; Krause, H.; Loebbecke, S.; Lutz, N.; Tuercke, T.; Schweikert, W. Trans IChemE 2003, 81, 760–765.CrossRefGoogle Scholar
  9. 9.
    Pelleter, J.; Renaud, F. Org. Process Res. Dev. 2009, 13, 698–705.CrossRefGoogle Scholar
  10. 10.
    Brocklehurst, C. E.; Lehmann, H.; La Vecchia, L. Org. Process Res. Dev. 2011, 15, 1447–1453.CrossRefGoogle Scholar
  11. 11.
    Zaborenko, N.; Murphy, E. R.; Kralj, J. G.; Jensen, K. F. Ind. Chem. Res. 2010, 49, 4132–4139.CrossRefGoogle Scholar
  12. 12.
    Tran, T. D.; Pagoria, P. F.; Hoffman, M. D.; Cutting, J. G.; Lee, R. S.; Simpson, R. L. Characterization of 2, 6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) as an insensitive high explosive material, in Proceedings of 33rd International Annual Conference of ICT (Energetic Materials), Karlsruhe, Germany, June 25–28, 2002.Google Scholar
  13. 13.
    Pagoria, P. F.; Mitchell, A. R.; Schmidt, R. D.; Simspon, R. L.; Garcia, F.; Forbes, J.; Cutting, J.; Lee, R.; Swansiger, R.; Hoffman, D. M. Synthesis, Scale-up and Experimental Testing of LLM-105 (2, 6-diamino-3, 5-dinitropyrazine 1-oxide). Insensitive Munitions & Energetic Materials Technology Symposium, San Diego, CA, 1998, I-3-1 to I-3-5.Google Scholar
  14. 14.
    Bright, N. F. H.; Hutchison, H.; Smith, D. J. Soc. Chem. Ind. 1946, 65, 385–388.CrossRefGoogle Scholar
  15. 15.
    Stroock, A. D.; Dertinger, S. K. W.; Ajdari, A.; Mezic, I.; Stone, H. A.; Whitesides, G. M. Science 2002, 295, 647–651.CrossRefGoogle Scholar
  16. 16.
    Lee, C.-Y.; Chang, C.-L.; Wang, Y.-N.; Fu, L.-M. Int. J. Mol. Sci. 2011, 12, 3263–3287.CrossRefGoogle Scholar
  17. 17.
    Pennella, F. R.; Rossi, M.; Ripandelli, S.; Rasponi, M.; Mastrangelo, F.; Deriu, M. A.; Ridolfi, L.; Kähler, C. J.; Morbiducci, U. Biomed. Microdev. 2012, 14, 849–862.CrossRefGoogle Scholar
  18. 18.
    Bellamy, A. J. Cent. Eur. J. Energ. Mater. 2007, 4, 33–57.Google Scholar
  19. 19.(a)
    Seong, G. H.; Crooks, R. M. J. Am. Chem. Soc. 2002, 124, 13360–13361CrossRefGoogle Scholar
  20. (b).
    Shang, M.; Noël, T.; Wang, Q.; Su, Y.; Miyabayashi, K.; Hessel, V.; Hasebe, S. Chem. Eng. J. 2015, 260, 454–462.CrossRefGoogle Scholar
  21. 20.
    Pagoria, P. F.; Zhang, M.-X. Synthesis of pyrazines including 2, 6-diaminopyrazine-1-oxide (DAPO) and 2, 6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105). US 20100267955 A1, April 20, 2009.Google Scholar
  22. 21.
    Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512–7515.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  • Nathaniel B. Zuckerman
    • 1
  • Maxim Shusteff
    • 2
  • Philip F. Pagoria
    • 1
  • Alexander E. Gash
    • 1
  1. 1.Materials Science DivisionLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Materials Engineering DivisionLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations