Journal of Flow Chemistry

, Volume 5, Issue 3, pp 133–138 | Cite as

Continuous-Flow Synthesis and Purification of Atropine with Sequential In-Line Separations of Structurally Similar Impurities

  • Chunhui Dai
  • David R. Snead
  • Ping Zhang
  • Timothy F. Jamison


Flow chemistry has attracted significant interest in pharmaceutical development, where substantial efforts have been directed toward the design of continuous processes. Here, we report a total synthesis of atropine in flow that features an unusual hydroxymethylation and separation of several byproducts with high structural similarity to atropine. Using a combination of careful pH control in three sequential liquid-liquid extractions and a functionalized resin, atropine is delivered by the flow system with >98% purity.


continuous-flow synthesis membrane separation atropine 

Supplementary material

41981_2015_5030133_MOESM1_ESM.pdf (480 kb)
Supplementary material, approximately 491 KB.


  1. 1.
    Plouffe, P.; Macchi, A. Org. Proc. Res. Dev. 2014, 18, 1286–1294.CrossRefGoogle Scholar
  2. 2.(a)
    Manson, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300–2318CrossRefGoogle Scholar
  3. (b).
    Anderson, N. G. Org. Proc. Res. Dev. 2012, 16, 852–869.CrossRefGoogle Scholar
  4. 3.(a)
    Plumb, K. Chem. Eng. Res. Des. 2005, 83, 730–738CrossRefGoogle Scholar
  5. (b).
    Longstreet, A. R.; Opalka, S. M.; Campbell, B. S.; Gupton, B. F.; McQuade, D. T. Beilstein J. Org. Chem. 2013, 9, 2570–2578CrossRefGoogle Scholar
  6. (c).
    Rodrigues, T.; Schneider, P.; Schneider, G. Angew. Chem., Int. Ed. 2014, 53, 5750–5758CrossRefGoogle Scholar
  7. (d).
    Pinho, V. D.; Gutmann, B.; Miranda, L. S. M.; de Souza, R. O. M. A.; Kappe, C. O. J. Org. Chem. 2014, 79, 1555–1562CrossRefGoogle Scholar
  8. (e).
    Ghislieri, D.; Gilmore, K.; Seeberger, P. H. Angew. Chem., Int. Ed. 2015, 54, 678–682.Google Scholar
  9. 4.
    For selected examples: (a) Bogdan, A. R.; Poe, S. L.; Kubis, D. C.; Broadwater, C. J.; McQuade, D. T. Angew. Chem., Int. Ed. 2009, 48, 8547–8550Google Scholar
  10. (b).
    Lévesque, F.; Seeberger, P. H. Angew. Chem., Int. Ed. 2012, 51, 1706–1709CrossRefGoogle Scholar
  11. (c).
    Battilocchio, C.; Deadman, B. J.; Nikbin, N.; Kitching, M. O.; Baxendale, I. R.; Ley, S. V. Chem. Eur. J. 2013, 19, 7917–7930CrossRefGoogle Scholar
  12. (d).
    Newton, S.; Carter, C. F.; Pearson, C. M.; Alves, L. de C.; Lange, H.; Thansandote, P.; Ley, S. V. Angew. Chem., Int. Ed. 2014, 53, 4915–4920.CrossRefGoogle Scholar
  13. 5.
    For selected examples: (a) Sahoo, H. R.; Kralj, J. G.; Jensen, K. F. Angew. Chem., Int. Ed. 2007, 46, 5704–5708Google Scholar
  14. (b).
    Hartman, R. L.; Naber, J. R.; Buchwald, S. L.; Jensen, K. F. Angew. Chem., Int. Ed. 2010, 49, 899–903CrossRefGoogle Scholar
  15. (c).
    Noël, T.; Kuhn, S.; Musacchio, A. J.; Jensen, K. F.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 5943–5946CrossRefGoogle Scholar
  16. (d).
    Snead, D. R.; Jamison, T. F. Chem. Sci. 2013, 4, 2822–2827CrossRefGoogle Scholar
  17. (e).
    Mascia, S.; Heider, P. L.; Zhang, H.; Lakerveld, R.; Benyahia, B.; Barton, P. I.; Braatz, R. D.; Cooney, C. L.; Evans, J. M. B.; Jamison, T. F.; Jensen, K. F.; Myerson, A. S.; Trout, B. L. Angew. Chem., Int. Ed. 2013, 52, 12359–12363CrossRefGoogle Scholar
  18. (f).
    Heider, P. L.; Born, S. C.; Basak, S.; Benyahia, B.; Lakerveld, R.; Zhang, H.; Hogan, R.; Buchbinder, L.; Wolfe, A.; Mascia, S.; Evans, J. M. B.; Jamison, T. F.; Jensen, K. F. Org. Proc. Res. Dev. 2014, 18, 402–09CrossRefGoogle Scholar
  19. (g).
    Ingham, R. J.; Battilocchio, C.; Fitzpatrick, D. E.; Sliwinski, E.; Hawkins, J. M.; Ley, S. V. Angew. Chem., Int. Ed. 2015, 54, 144–148CrossRefGoogle Scholar
  20. (h).
    Vural Gürsel, I.; Aldiansyah, F.; Wang, Q.; Noël, T.; Hessel, V. Chem. Eng. J. 2015, 270, 468–475.CrossRefGoogle Scholar
  21. 6.
    Adamo, A.; Heider, P. L.; Weeranoppanant, N.; Jensen, K. F. Ind. Eng. Chem. Res. 2013, 52, 10802–10808.CrossRefGoogle Scholar
  22. 7.
    Hopkin, M. D.; Baxendale, I. R.; Ley, S. V. Org. Biomol. Chem. 2013, 11, 1822–1839.CrossRefGoogle Scholar
  23. 8.
    Hartman, R. L.; Sahoo, H. R.; Yen, B. C.; Jensen, K. F. Lab Chip, 2009, 9, 1843–1849.CrossRefGoogle Scholar
  24. 9.
    O’Brien, A. G.; Horvath, Z.; Lévesque, F.; Lee, J. W.; Seidel-Morgenstern, A.; Seeberger, P. H. Angew. Chem., Int. Ed. 2012, 51, 7028–7030.CrossRefGoogle Scholar
  25. 10.
    Polster, C. S.; Cole, K. P.; Burcham, C. L.; Campbell, B. M.; Frederick, A. L.; Hansen, M. M.; Harding, M.; Heller, M. R.; Miller, M. T.; Phillips, J. L.; Pollock, P. M.; Zaborenko, N. Org. Proc. Res. Dev. 2014, 18, 1295–1309.CrossRefGoogle Scholar
  26. 11.
    Snead, D. R.; Jamison, T. F. Angew. Chem., Int. Ed. 2015, 54, 983–987.CrossRefGoogle Scholar
  27. 12.
    Zhang, P.; Russell, M. G.; Jamison, T. F. Org. Proc. Res. Dev. 2014, 18, 1567–1570.CrossRefGoogle Scholar
  28. 13.
    Vardanyan, R.; Hruby. V. J. Synthesis of Essential Drugs, 1st ed.; Elsevier Science: Amsterdam, 2006; p. 196.Google Scholar
  29. 14.
    WHO Model List of Essential Medicines: (accessed Feb 8, 2015).
  30. 15.
    Gadzikowska, M.; Grynkiewicz, G. Acta Pol. Pharm. 2002, 59, 149–160.Google Scholar
  31. 16.
    Landenburg, A. Ber. 1879, 12, 941–944.CrossRefGoogle Scholar
  32. 17.
    Robinson, R. J. Chem. Soc., Trans. 1917, 111, 762–768.CrossRefGoogle Scholar
  33. 18.
    Gore, V.; Joshi, R.; Tripathi, A.; Jadhav, M.; Bhandari, S. Mylan Laboratories Ltd., Hyderabad, India. US Patent 2014/102829 Al, 2014.Google Scholar
  34. 19.
    Grynkiewicz, G.; Gadzikowska, M. Pharmacol. Rep. 2008, 60, 439–463.Google Scholar
  35. 20.
    Takeuchi, Y.; Koga, K.; Shioiri, T.; Yamada, S.-I. Chem. Pharm. Bull. 1971, 19, 2603–2608.CrossRefGoogle Scholar
  36. 21.(a)
    Trost, B. M.; Hafner, C. D.; Jebaratnam, D.J.; Krische, M. J.; Thomas, A. P. J. Am. Chem. Soc. 1999, 121, 6183–6192CrossRefGoogle Scholar
  37. (b).
    Li, Y.; Feng, J.-P.; Wang, W.-H.; Chen, J.; Cao, X.-P J. Org. Chem. 2007, 72, 2344–2350CrossRefGoogle Scholar
  38. (c).
    Sharpe, R. J.; Mali-nowski, J. T.; Johnson, J. S. J. Am. Chem. Soc. 2013, 135, 17990–17998.CrossRefGoogle Scholar
  39. 22.
    Rodriguez, L.; Lu, N.; Yang, N-L. Synlett, 1990, 4, 227–228.CrossRefGoogle Scholar
  40. 23.
    Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon: Oxford, 1988.Google Scholar
  41. 24.
    pH Buffers were made according to “Laboratory stock solution and equip-ment, common stock solutions, buffers, and media.” Curr. Protoc. Cell Biol. 1998 Appendix 2: Appendix 2A. Solution A: 27.2 g KH2PO4 per liter in water. Solution B: 34.8 g K2HPO4 per liter in water. Thus, pH=8 buffer [0.1 M]: 5.3 mL (solution A) / 94.7 mL (solution B).Google Scholar
  42. 25.
    The boronic acid resin-packed cartridge needs to be replaced every 1.5 h in order to achieve complete removal of apoatropine.Google Scholar
  43. 26.
    For 1H NMR data, see: (1) Stenberg, V. I.; Narain, N. K.; Singh, S. P. J. Heterocycl. Chem. 1977, 14, 225–226CrossRefGoogle Scholar
  44. (2).
    Do Pham, D. D.; Kelso, G. F.; Yang, Y.; Hearn, M. T W. Green Chem. 2012, 14, 1189–1195. For 13C NMR data, seeCrossRefGoogle Scholar
  45. 2a.
    Taha, A. M.; Rücker, G. J. Pharm. Sci. 1978, 67, 775–779.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  • Chunhui Dai
    • 1
  • David R. Snead
    • 1
  • Ping Zhang
    • 1
  • Timothy F. Jamison
    • 1
  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations