Journal of Flow Chemistry

, Volume 5, Issue 4, pp 210–215 | Cite as

Pt-Cinchonidine Catalyzed Asymmetric Catalytic Cascade Reaction of 2-Nitrophenylpyruvates in Flow System

  • Lenke Kovács
  • György Szőllősi
  • Ferenc Fülöp
Full Paper


The asymmetric heterogeneous catalytic cascade reaction of ethyl 2-nitro-3-methylphenylpyruvate has been investigated over platinum modified by cinchonidine in continuous-flow system using a fixed-bed reactor. The high selectivities and enantioselectivities of the (R)-3-hydroxy-3,4-dihydro-8-methylquinolin-2(1H)-one obtained in previous studies in batch reactor were not reached. The catalyst was in situ prehydrogenated and premodified with cinchonidine, and the reaction conditions optimized for batch reactor were changed in order to increase the yield and enantioselectivity of the desired product under flow conditions. Results obtained in the flow apparatus contributed to the understanding of the reaction pathway through which the quinolone is formed. It was shown that, at low conversions, the intermediate aminohydroxyester desorbs preferentially and is further transformed by readsorption and cyclization to the quinolone derivative after complete disappearance of the 2-nitrophenylpyruvate. However, at high conversion, the formation of the quinolone may also occur instantaneously on the Pt surface following the two competitive reduction steps. The ratio of the product formed through these two pathways is determined by the reaction conditions and the system used.


asymmetric cascade reaction cinchona alkaloid platinum hydroquinolone 


  1. 1.
    For recent reviews on use of continuous-flow systems in chemical synthesis, see: (a) Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300–2318CrossRefGoogle Scholar
  2. 1.(b)
    Sahoo, H. R.; Kralj, J. G.; Jensen, K. F. Angew. Chem., Int. Ed. 2007, 46, 5704–5708CrossRefGoogle Scholar
  3. 1.(c)
    Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675–680CrossRefGoogle Scholar
  4. 1.(d)
    Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Angew. Chem., Int. Ed. 2011, 50, 7502–7519CrossRefGoogle Scholar
  5. 1.(e)
    Noël, T. Buchwald, S. L. Chem. Soc. Rev. 2011, 40, 5010–5029CrossRefGoogle Scholar
  6. 1.(f)
    Wegner, J.; Ceylan, S.; Kirschning, A. Adv. Synth. Catal. 2012, 354, 17–57CrossRefGoogle Scholar
  7. 1.(g)
    Anderson, N. G. Org. Process Res. Dev. 2012, 16, 852–869CrossRefGoogle Scholar
  8. 1.(h)
    Baxendale, I. R. J. Chem. Technol. Biotechnol. 2013, 88, 519–552CrossRefGoogle Scholar
  9. 1.(i)
    Wiles, C.; Watts, P. Green Chem. 2014, 16, 55–62.CrossRefGoogle Scholar
  10. 2.
    For reviews of continuous-flow processes applied in the preparation of natural products and pharmaceutical intermediates: (a) Watts, P.; Haswell, S. J. Drug Discovery Today 2003, 8, 586–593CrossRefGoogle Scholar
  11. 2.(b)
    Wiles, C.; Watts, P. Expert Opin. Drug Discovery 2007, 2, 1487–1503CrossRefGoogle Scholar
  12. 2.(c)
    Baumann, M.; Baxendale, I. R.; Ley, S. V. Mol. Diversity 2011, 15, 613–630CrossRefGoogle Scholar
  13. 2.(d)
    Malet-Sanz, L.; Susanne, F. J. Med. Chem. 2012, 55, 4062–4098CrossRefGoogle Scholar
  14. 2.(e)
    Baraldi, P. T.; Hessel, V. Green Process Synth. 2012, 1, 149–167Google Scholar
  15. 2.(f)
    Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013, 42, 8849–8869.CrossRefGoogle Scholar
  16. 3.
    For recent reviews on continuous-flow asymmetric catalytic reactions, see: (a) Mak, X. Y.; Laurino, P.; Seeberger, P. H. Beilstein J. Org. Chem. 2009, 5, No. 19Google Scholar
  17. 3.(b)
    Burguete, M. I.; García-Verdugo, E.; Luis, S. V. Beilstein J. Org. Chem. 2011, 7, 1347–1359CrossRefGoogle Scholar
  18. 3.(c)
    Rasheed, M.; Elmore, S. C.; Wirth, T. Asymmetric Reactions in Flow Reactors. In Catalytic Methods in Asymmetric Synthesis, Advanced Materials, Techniques, and Applications; Gruttadauria, M.; Giacalone, F., Eds.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2011; Chapter 8, pp. 345–371CrossRefGoogle Scholar
  19. 3.(d)
    Tsubogo, T.; Ishiwata, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2013, 52, 6590–6604CrossRefGoogle Scholar
  20. 3.(e)
    Zhao, D.; Ding, K. ACS Catal. 2013, 3, 928–944CrossRefGoogle Scholar
  21. 3.(f)
    Puglisi, A; Benaglia, M.; Chiroli, V. Green Chem. 2013, 15, 1790–1813.CrossRefGoogle Scholar
  22. 4.(a)
    Handbook of Asymmetric Heterogeneous Catalysis; Ding, K.; Uozumi, Y., Eds.; Wiley-VCH: Weinheim, 2008CrossRefGoogle Scholar
  23. 4.(b)
    Enantioselective Homogeneous Supported Catalysis; Šebesta, R., Ed.; RSC Green Chem. No. 15; RSC Publ.: Cambridge, 2012.Google Scholar
  24. 5.
    For reviews on utilization of immobilized chiral metal complexes and organocatalysts, see: (a) Corma, A.; Garcia, H. Adv. Synth. Catal. 2006, 348, 1391–1412CrossRefGoogle Scholar
  25. 5.(b)
    Kobayashi, S.; Sugiura, M. Adv. Synth. Catal. 2006, 348, 1496–1504CrossRefGoogle Scholar
  26. 5.(c)
    Heitbaum, M.; Glorius, F.; Escher, I. Angew. Chem., Int. Ed. 2006, 45, 4732–4762CrossRefGoogle Scholar
  27. 5.(d)
    Ding, K.; Wang, Z.; Wang, X.; Liang, Y.; Wang, X. Chem. Eur. J. 2006, 12, 5188–5197CrossRefGoogle Scholar
  28. 5.(e)
    Benaglia, M. New J. Chem. 2006, 30, 1525–1533CrossRefGoogle Scholar
  29. 5.(f)
    Thomas, J. M.; Raja, R. Acc. Chem. Res. 2008, 41, 708–720CrossRefGoogle Scholar
  30. 5.(g)
    Fraile, J. M.; García. J. I.; Mayoral, J. A. Coord. Chem. Rev. 2008, 252, 624–646CrossRefGoogle Scholar
  31. 5.(h)
    Ni, B.; Headley, A. D. Chem. Eur. J. 2010, 16, 4426–4436CrossRefGoogle Scholar
  32. 5.(i)
    Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196–1231CrossRefGoogle Scholar
  33. 5.(j)
    He, Y.-M.; Feng, Y.; Fan, Q.-H. Acc. Chem. Res. 2014, 47, 2894–2906CrossRefGoogle Scholar
  34. 5.(k)
    Fernandes, A. E.; Jonas, A. M.; Riant, O. Tetrahedron 2014, 70, 1709–1731CrossRefGoogle Scholar
  35. 5.(l)
    El Kadib, A. ChemSusChem 2015, 8, 217–244.CrossRefGoogle Scholar
  36. 6.
    For reviews on application of asymmetric heterogeneous catalysts obtained by adsorption of chiral modifiers, see: (a) Studer, M.; Blaser, H.-U.; Exner, C. Adv. Synth. Catal. 2003, 345, 45–65CrossRefGoogle Scholar
  37. 6.(b)
    Murzin, D. Yu.; Mäki-Arvela, P.; Toukoniitty, E.; Salmi, T. Catal. Rev. Sci. Eng. 2005, 47, 175–256CrossRefGoogle Scholar
  38. 6.(c)
    Osawa, T.; Harada, T.; Takayasu, O. Curr. Org. Chem. 2006, 10, 1513–1531CrossRefGoogle Scholar
  39. 6.(d)
    Bartók, M. Curr. Org. Chem. 2006, 10, 1533–1567CrossRefGoogle Scholar
  40. 6.(e)
    Mallat, T.; Orglmeister, E.; Baiker, A. Chem. Rev. 2007, 107, 4863–4890CrossRefGoogle Scholar
  41. 6.(f)
    Zaera, F. Acc. Chem. Res. 2009, 42, 1152–1160CrossRefGoogle Scholar
  42. 6.(g)
    Margitfalvi, J. L.; Tálas, E. Asymmetric hydrogenation of activated ketones. In Catalysis; Spivey, J. J.; Dooley, K.M., Eds.; RSC Publ.: Cambridge, 2010; vol. 22, pp. 144–278Google Scholar
  43. 6.(h)
    Yasukawa, T.; Miyamura, H.; Kobayashi, S. Chem. Soc. Rev. 2014, 43, 1450–1461.CrossRefGoogle Scholar
  44. 7.(a)
    Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006CrossRefGoogle Scholar
  45. 7.(b)
    Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134–7186CrossRefGoogle Scholar
  46. 7.(c)
    Poulin, J.; Grisë-Bard, C. M.; Barriault, L. Chem. Soc. Rev. 2009, 38, 3092–3101CrossRefGoogle Scholar
  47. 7.(d)
    Alba, A.-N.; Companyo, X.; Viciano, M.; Rios, R. Curr. Org. Chem. 2009, 13, 1432–1474CrossRefGoogle Scholar
  48. 7.(e)
    Barluenga, J.; Rodríguez, F.; FaÑanás, F. J. Chem. Asian J. 2009, 4, 1036–1048CrossRefGoogle Scholar
  49. 7.(f)
    Pellissier, H. Chem. Rev. 2013, 113, 442–524.CrossRefGoogle Scholar
  50. 8.
    For reviews on asymmetric catalytic domino or cascade reactions, see: (a) Chapman, C. J.; Frost, C. G. Synthesis 2007, 1–21Google Scholar
  51. 8.(b)
    Grondal, C.; Jeanty, M.; Enders, D. Nature Chem. 2010, 2, 167–178CrossRefGoogle Scholar
  52. 8.(c)
    Pellissier, H. Adv. Synth. Catal. 2012, 354, 237–294CrossRefGoogle Scholar
  53. 8.(d)
    Clavier, H.; Pellissier, H. Adv. Synth. Catal. 2012, 354, 3347–3403CrossRefGoogle Scholar
  54. 8.(e)
    Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314–325CrossRefGoogle Scholar
  55. 8.(f)
    Pellissier, H. Asymmetric Domino Reactions. RSC Catalysis Series No. 10; RSC Publ.: Cambridge, 2013Google Scholar
  56. 8.(g)
    Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390–2431.CrossRefGoogle Scholar
  57. 9.
    For examples of asymmetric cascade reactions catalysed by immobilized chiral catalysts, see: (a) Choudary, B. M.; Chowdari, N. S.; Madhi, S.; Kantam, M. L. Angew. Chem., Int. Ed. 2001, 40, 4620–4623Google Scholar
  58. 9.(b)
    Choudary, B. M.; Chowdari, N. S.; Jyothi, K.; Kumar, N. S.; Kantam, M. L. Chem. Commun. 2002, 586–587Google Scholar
  59. 9.(c)
    Yang, S.; He, J. Chem. Commun. 2012, 48, 10349–10351CrossRefGoogle Scholar
  60. 9.(d)
    Akagawa, K.; Umezawa, R.; Kudo, K. Beilstein J. Org. Chem. 2012, 8, 1333–1337CrossRefGoogle Scholar
  61. 9.(e)
    Jiang, X.; Zhu, H.; Shi, X.; Zhong, Y.; Li, Y.; Wang, R. Adv. Synth. Catal. 2013, 355, 308–314Google Scholar
  62. 9.(f)
    Deiana, L.; Ghisu, L.; Afewerki, S.; Verho, O.; Johnston, E. V.; Hedin, N.; Bacsik, Z.; Córdova, A. Adv. Synth. Catal. 2014, 356, 2485–2492CrossRefGoogle Scholar
  63. 9.(g)
    Yadav, J.; Stanton, G. R.; Fan, X.; Robinson, J. R.; Schelter, E. J.; Walsh, P. J.; Pericas, M. A. Chem. Eur. J. 2014, 20, 7122–7127CrossRefGoogle Scholar
  64. 9.(h)
    An, Z.; Guo, Y.; Zhao, L.; Li, Z.; He, J. ACS Catal. 2014, 4, 2566–2576.CrossRefGoogle Scholar
  65. 10.
    Felföldi, K.; Szöri, K.; Bartók, M. Appl. Catal. A: Gen. 2003, 351, 457–460.CrossRefGoogle Scholar
  66. 11.
    Szollosi, Gy.; Bartók, M. Arkivoc 2012, 16–27.Google Scholar
  67. 12.(a)
    Szollosi, Gy.; Makra, Zs.; Kovács, L.; Fülöp. F.; Bartók, M. Adv. Synth. Catal. 2013, 355, 1623–1629CrossRefGoogle Scholar
  68. 12.(b)
    Szollosi, Gy. Magyar Kém. Foly. 2014, 120, 77–82Google Scholar
  69. 12.(c)
    Szollosi, Gy.; Kovács, L.; Makra, Zs. Catal. Sci. Technol. 2015, 5, 697–704.CrossRefGoogle Scholar
  70. 13.
    Alza, E.; Sayalero, S.; Cambeiro, X. C.; Martín-Rapún, R.; Miranda, P. O.; Pericàs, M. A. Synlett 2011, 464–468.Google Scholar
  71. 14.
    Suzuki, H.; Gyoutoku, H.; Yokoo, H.; Shinba, M.; Sato, Y.; Yamada, H.; Murakami, Y. Synlett 2000, 1196–1198.Google Scholar
  72. 15.
    Colombo, E.; Ratel, P.; Mounier, L.; Guillier, F. J. Flow Chem. 2011, 2, 68–73.CrossRefGoogle Scholar
  73. 16.(a)
    Garland, M.; Blaser, H.-U. J. Am. Chem. Soc. 1990, 112, 7048–7050CrossRefGoogle Scholar
  74. 16.(b)
    Vargas, A.; Bürgi, T.; Baiker, A. New J. Chem. 2002, 26, 807–810CrossRefGoogle Scholar
  75. 16.(c)
    Szollosi, Gy.; Cserënyi, Sz.; Fülöp, F.; Bartók, M. J. Catal. 2008, 260, 245–253CrossRefGoogle Scholar
  76. 16.(d)
    Szollosi, Gy.; Cserënyi, Sz.; Bucsi, I.; Bartók, T.; Fülöp, F.; Bartók, M. Appl. Catal. A: Gen. 2010, 382, 263–271.CrossRefGoogle Scholar
  77. 17.(a)
    iKünzle, N.; Hess, R.; Mallat, T.; Baiker, A. J. Catal. 1999, 186, 239–241CrossRefGoogle Scholar
  78. 17.(b)
    Li, X.; Li, C. Catal. Lett. 2001, 77, 251–254CrossRefGoogle Scholar
  79. 17.(c)
    Toukoniitty, E.; Nieminen, V.; Taskinen, A.; Päivärinta, J.; Hotokka, M.; Murzin, D. Yu. J. Catal. 2004, 224, 326–339.CrossRefGoogle Scholar
  80. 18.(a)
    Szollosi, Gy.; Hermán, B.; Fülöp, F.; Bartók, M. React. Kinet. Catal. Lett. 2006, 88, 391–398CrossRefGoogle Scholar
  81. 18.(b)
    Hermán, B.; Szollosi, Gy.; Fülöp, F.; Bartók, M. Appl. Catal. A: Gen. 2007, 331, 39–43CrossRefGoogle Scholar
  82. 18.(c)
    Szollosi, Gy.; Cserënyi, Sz.; Bartók, M. Catal. Lett. 2010, 134, 264–269.CrossRefGoogle Scholar
  83. 19.(a)
    Ellison, P.; Feinberg, M. J. Mol. Catal. A: Chem. 2000, 154, 155–167CrossRefGoogle Scholar
  84. 19.(b)
    Toukoniitty, E.; Mäki-Arvela, P.; Nieminen, V.; Salmi, T.; Murzin, D. Yu. Kinet. Catal. 2003, 44, 562–571CrossRefGoogle Scholar
  85. 19.(c)
    Ciambelli, P.; Sannino, D.; Palma, V.; Vaiano, V.; Bickley, R. I. Appl. Catal. A: Gen. 2008, 349, 140–147CrossRefGoogle Scholar
  86. 19.(d)
    Fuchs, M.; Goessler, W.; Pilger, C.; Kappe, C. O. Adv. Synth. Catal. 2010, 352, 323–328CrossRefGoogle Scholar
  87. 19.(e)
    Cantillo, D.; Kappe, C. O. ChemCatChem 2014, 6, 3286–3305.CrossRefGoogle Scholar
  88. 20.(a)
    Morawsky, V.; Prüße, U.; Witte, L.; Vorlop, K.-D. Catal. Commun. 2000, 1, 15–20CrossRefGoogle Scholar
  89. 20.(b)
    Bartók, M.; Szollosi, Gy.; Balázsik, K.; Bartók, T. J. Mol. Catal. A: Chem. 2002, 177, 299–305CrossRefGoogle Scholar
  90. 20.(c)
    Szollosi, Gy.; Forgó, P.; Bartók, M. Chirality 2003, 15, S82–S89.CrossRefGoogle Scholar
  91. 21.
    Baiker, A. J. Mol. Catal. A: Chem. 1997, 115, 473–493.CrossRefGoogle Scholar
  92. 22.
    ThalesNano. H-Cube® Continuous-flow Hydrogenation Reactor. (accessed 21 March 2015).

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  • Lenke Kovács
    • 1
  • György Szőllősi
    • 2
  • Ferenc Fülöp
    • 1
    • 2
  1. 1.Institute of Pharmaceutical ChemistryUniversity of SzegedSzegedHungary
  2. 2.MTA-SZTE Stereochemistry Research GroupSzegedHungary

Personalised recommendations