Journal of Flow Chemistry

, Volume 5, Issue 3, pp 160–165 | Cite as

Mass Transfer Characteristics of Ozonolysis in Microreactors and Advanced-Flow Reactors

Full Paper


Ozonolysis of alkenes in liquid phase is conducted from micro scales to milli scales using a multichannel microreactor, a Corning low-flow reactor (LFR), and a Corning advanced-flow reactor (AFR). For the mass transfer limited test case of ozonolysis of 1-decene, maximum conversions that depend on the ozone availability in the gas phase are achieved regardless of the operating conditions, proving an excellent mass transfer in all three reactors. Ozonolysis of Sudan Red 7B dye provides visualization of the completion of the reaction in the glass-made AFR and LFR. Overall mass transfer coefficients are estimated to be on the order of 1/s in both the LFR and AFR, increasing with both liquid and gas flow rates. These values are within the same range observed in microchannels and one order of magnitude larger than in other conventional contactors.


mass transfer ozonolysis 1-decene Sudan Red dye microchannels advanced flow reactors 

Supplementary material

41981_2015_5030160_MOESM1_ESM.pdf (333 kb)
Supplementary material, approximately 341 KB.


  1. 1.
    Schönbein, C. F. J. Prakî. Chem. 1855, 66, 282.Google Scholar
  2. 2.
    Van Omum, S. G.; Champeau, R. M.; Pariza, R. Chem. Rev. 2006, 106, 2990–3001.CrossRefGoogle Scholar
  3. 3.
    Caron, S.; Dugger, R. W.; Ruggen, S. G. Ragan, J. A.; Ripin, D. H. B. Chem. Rev. 2006, 106, 2943–2989.CrossRefGoogle Scholar
  4. 4.
    Zaikov, G.; Rakovsky, S. Ozonizaîion ofOrganic and Polymer Compounds; Smithers Rapra: Shawbury, 2009.Google Scholar
  5. 5.
    Deslongchamps, P.; Moreau, C. Can. J. Chem. 1971, 49, 2465.CrossRefGoogle Scholar
  6. 6.
    Criegee, R. Angew. Chem. Int. Ed. 1975, 14, 11.CrossRefGoogle Scholar
  7. 7.
    Steinfeldt, N.; Bentrup, U.; Jähnisch, K. Ind. Eng. Chem. Res. 2010, 49, 72–80.CrossRefGoogle Scholar
  8. 8.
    Wada, Y.; Schmidt, M. A.; Jensen, K. F. Ind. Eng. Chem. Res. 2006, 45, 8036–8042.CrossRefGoogle Scholar
  9. 9.
    Steinfeldt, N.; Abdallah, R.; Dingerdissen, U.; Jähnisch, K. Org. Process Res. Dev. 2007, 11, 1025–1031.CrossRefGoogle Scholar
  10. 10.
    Hübner, S.; Bentrup, U.; Budde, U.; Lovis, K.; Dietrich, T.; Freitag, A.; Küpper, L.; Jähnisch, K. Org. Process Res. Dev. 2009, 13, 952–960.CrossRefGoogle Scholar
  11. 11.
    O’Brien, M.; Baxendale, I. R. Ley, S. V. Org. Lett. 2010, 12, 1596–1598.CrossRefGoogle Scholar
  12. 12.
    Irfan, M.; Glasnov, T. N.; Kappe, C. O. Org. Lett. 2011, 13, 984–987.CrossRefGoogle Scholar
  13. 13.
    Roydhouse, M. D.; Ghaini, A.; Constantinou, A. Cantu-Perez, A.; Motherwell, W. B.; Gavriilidis, A. Org. Process Res. Dev. 2011, 15, 989–996.CrossRefGoogle Scholar
  14. 14.
    Roydhouse, M. D.; Motherwell, W. B.; Constantinou, A.; Gavriilidis, A.; Wheeler, R.; Down, K.; Campbell, I. RSCAdv. 2013, 3, 5076.Google Scholar
  15. 15.
    Woitalka, A.; Kuhn, S.; Jensen, K. F. Chem. Eng. Sci. 2014, 116, 1–8.CrossRefGoogle Scholar
  16. 16.
    Nieves-Remacha, M. J.; Kulkarni, A. A.; Jensen, K. F. Ind. Eng. Chem. Res. 2013, 52, 8996–9010.CrossRefGoogle Scholar
  17. 17.
    Nieves-Remacha, M. J.; Kulkarni, A. A.; Jensen, K. F. Ind. Eng. Chem. Res. 2012, 51, 16251–16262.CrossRefGoogle Scholar
  18. 18.
    Corning Inc. Advanced-flow reactors website. (accessed April 12, 2015).
  19. 19.
    Lavric, D. Advance Flow Reactors for Intensifying Two-Phase Process. Corning S.A.S.; France. Autumm Session PIN-NL 2014. (accessed May 20, 2015).Google Scholar
  20. 20.
    Razumovskii, S. D.; Zaikov, G. E. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1971, 20, 616–620.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  • María José Nieves-Remacha
    • 1
  • Klavs F. Jensen
    • 2
  1. 1.The Dow Chemical CompanyFreeportUSA
  2. 2.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations