Journal of Flow Chemistry

, Volume 5, Issue 3, pp 166–171 | Cite as

When Solids Stop Flow Chemistry in Commercial Tubing

  • Yizheng Chen
  • Jasmine C. Sabio
  • Ryan L. Hartman
Full Paper


Flow chemistry has emerged as the enabling field of high-throughput, data-driven discovery, and process chemistry, yet solids handling remains its key challenge. Insoluble salt by-products can stop flow, fluctuate reagent concentrations in reactors, and cost unexpected time and materials consumptions. The clogging of perfluoroalkoxy (PFA) tubing, stainless steel (SS) tubing, and a silicon microreactor by NaCl during a Pd-catalyzed amination using XPhos ligand was each studied. Our goal of understanding the appropriate reactor design provides in-depth analyses of constriction and mechanical entrapment. Calculations of Stokes number (St)>1 revealed that NaCl particle depositions were independent of the reactor materials. Analyses of the clogging time’s dependence on the residence time (τ) and particle volume fraction (ϕ) discovered commercial tubing to be inadequate for the decoupling of the kinetics. The results prescribe why fabricated microreactors with on-chip analytics, particle formations and dissolutions, and without fluidic connections are solutions to discover and develop ubiquitous reactions that form inorganic salt by-products.


flow chemistry clogging amination Pd-catalyzed commerical tubing 


  1. 1.(a)
    McMullen, J. P.; Jensen, K. F. Org. Process Res. Dev. 2011, 15, 398–407CrossRefGoogle Scholar
  2. (b).
    Wong, S.-W.; Berglund, K. D.; Viswanath, S. K. Org. Process Res. Dev. 2014, 18, 1391–1399CrossRefGoogle Scholar
  3. (c).
    Chanda, A.; Daly, A. M.; Foley, D. A.; LaPack, M. A.; Mukherjee, S.; Orr, J. D.; Reid, G. L.; Thompson, D. R.; Ward, H. W. Org. Process Res. Dev. 2014; 19, 63–83CrossRefGoogle Scholar
  4. (d).
    Wiles, C.; Watts, P. Green Chem. 2012, 14, 38–54CrossRefGoogle Scholar
  5. (e).
    Wiles, C.; Watts, P. Chem. Commun. 2011, 47, 6512–6535CrossRefGoogle Scholar
  6. (f).
    Wiles, C.; Watts, P. Green Chem. 2014, 16, 55–62CrossRefGoogle Scholar
  7. (g).
    Hessel, V.; Kralisch, D.; Kockmann, N.; Noel, T.; Wang, Q. ChemSusChem 2013, 6, 746–789.CrossRefGoogle Scholar
  8. 2.(a)
    Wu, K.; Kuhn, S. Chim. Oggi.-Chem. Today 2014, 32, 62–66Google Scholar
  9. (b).
    Roberge, D. M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Chem. Eng. Technol. 2005, 28, 318–323CrossRefGoogle Scholar
  10. (c).
    Hartman, R. L. Org. Process Res. Dev. 2012, 16, 870–887.CrossRefGoogle Scholar
  11. 3.
    Song, L. F.; Elimelech, M. J. Colloid Interf. Sci. 1994, 167, 301–313.CrossRefGoogle Scholar
  12. 4.
    Marshall, J. K.; Kitchener, J. A. J. Colloid Interf. Sci. 1966, 22, 342–351.CrossRefGoogle Scholar
  13. 5.(a)
    Ramachandran, V.; Fogler, H. S. Langmuir 1998, 14, 4435–4444CrossRefGoogle Scholar
  14. (b).
    Ramachandran, V.; Fogler, H. S. J. Fluid Mech. 1999, 385, 129–156CrossRefGoogle Scholar
  15. (c).
    Wyss, H. M.; Blair, D. L.; Morris, J. F.; Stone, H. A.; Weitz, D. A. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 2006, 74, 061402.CrossRefGoogle Scholar
  16. 6.(a)
    Kockmann, N.; Kastner, J.; Woias, P. Chem. Eng. J. 2008, 135, S110–S116CrossRefGoogle Scholar
  17. (b).
    Georgieva, K.; Dijkstra, D. J.; Fricke, H.; Willenbacher, N. J. Colloid Interf. Sci. 2010, 352, 265–277.CrossRefGoogle Scholar
  18. 7.
    Hartman, R. L.; Naber, J. R.; Zaborenko, N.; Buchwald, S. L.; Jensen, K. F. Org. Process Res. Dev. 2010, 14, 1347–1357.CrossRefGoogle Scholar
  19. 8.
    Vitthal, S.; Sharma, M. M. J. Colloid Interf. Sci. 1992, 153, 314–336.CrossRefGoogle Scholar
  20. 9.(a)
    Serra, C. A.; Khan, I. U.; Chang, Z. Q.; Bouquey, M.; Muller, R.; Kraus, I.; Schmutz, M.; Vandamme, T.; Anton, N.; Ohm, C.; Zentel, R.; Knauer, A.; Kohler, M. J. Flow Chem. 2013, 3, 66–75CrossRefGoogle Scholar
  21. (b).
    Kraus, I.; Li, S. N.; Knauer, A.; Schmutz, M.; Faerber, J.; Serra, C. A.; Koohler, M. J. Flow Chem. 2014, 4, 72–78CrossRefGoogle Scholar
  22. (c).
    Steinbacher, J. L.; Lui, Y. K.; Mason, B. P.; Olbricht, W. L.; McQuade, D. T. J. Flow Chem 2012, 2, 56–U41CrossRefGoogle Scholar
  23. (d).
    Noel, T.; Naber, J. R.; Hartman, R. L.; McMullen, J. P.; Jensen, K. F.; Buchwald, S. L. Chem. Sci. 2011, 2, 287–290CrossRefGoogle Scholar
  24. (e).
    Noël, T.; Kuhn, S.; Musacchio, A. J.; Jensen, K. F.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 5943–5946CrossRefGoogle Scholar
  25. (f).
    Kuhn, S.; Noel, T.; Gu, L.; Heider, P. L.; Jensen, K. F. Lab Chip 2011, 11, 2488–2492.CrossRefGoogle Scholar
  26. 10.(a)
    Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338–6361CrossRefGoogle Scholar
  27. (b).
    Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534–1544CrossRefGoogle Scholar
  28. (c).
    Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440–1449CrossRefGoogle Scholar
  29. (d).
    Buchwald, S. L.; Jiang, L. In Metal-Catalyzed Cross-Coupling Reactions; deMeijere, A.; Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004 p. 699.Google Scholar
  30. 11.(a)
    Noel, T.; Buchwald, S. L. Chem. Soc. Rev. 2011, 40, 5010–5029CrossRefGoogle Scholar
  31. (b).
    Naber, J. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2010, 49, 9469–9474.CrossRefGoogle Scholar
  32. 12.
    Noel, T. In e-EROS Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Inc.: Hoboken, NJ, 2011, DOI: 10.1002/047084289X.rn01343.Google Scholar
  33. 13.(a)
    Privman, V.; Frisch, H. L.; Ryde, N.; Matijevic, E. J. Chem. Soc. Far. Trans. 1991, 87, 1371–1375CrossRefGoogle Scholar
  34. (b).
    Ryde, N.; Kallay, N.; Matijevic, E. J. Chem. Soc. Far. Trans. 1991, 87, 1377–1381CrossRefGoogle Scholar
  35. (c).
    Elimelech, M.; Gregory, J.; Jia, X.; Williams, R. Particle Deposition and Aggregation. Measurement, Modeling, and Simulation; Butterworth-Hienemann: Woburn, MA, 1995.Google Scholar
  36. 14.(a)
    Di Carlo, D.; Irimia, D.; Tompkins, R. G.; Toner, M. P. Natl. Acad. Sci. USA 2007, 104, 18892–18897CrossRefGoogle Scholar
  37. (b).
    Huang, L. R.; Cox, E. C.; Austin, R. H.; Stum, J. C. Science 2004, 304, 987–990.CrossRefGoogle Scholar
  38. 15.
    Flowers, B. S.; Hartman, R. L. Challenges 2012, 3, 194–211.CrossRefGoogle Scholar
  39. 16.(a)
    Navarro-Brull, F. J.; Poveda, P.; Ruiz-Femenia, R.; Bonete, P.; Ramis, J.; Gomez, R. Green Process. Synth. 2014, 3, 311–320Google Scholar
  40. (b).
    Bengtsson, M.; Laurell, T. Anal. Bioanal. Chem. 2004, 378, 1716–1721.CrossRefGoogle Scholar
  41. 17.(a)
    Horie, T.; Sumino, M.; Tanaka, T.; Matsushita, Y.; Ichimura, T.; Yoshida, J. Org. Process Res. Dev. 2010, 14, 405–410CrossRefGoogle Scholar
  42. (b).
    Valdes, J. R.; Santamarina, J. C. Can. Geotech. J. 2008, 45, 177–184.CrossRefGoogle Scholar
  43. 18.
    Mason, T. J. Chem. Soc. Rev. 1997, 26, 443–451.CrossRefGoogle Scholar
  44. 19.(a)
    Yang, Z.; Goto, H.; Matsumoto, M.; Maeda, R. Electrophoresis 2000, 21, 116–119CrossRefGoogle Scholar
  45. (b).
    Johansson, L.; Johansson, S.; Nikolajeff, F.; Thorslund, S. Lab Chip 2009, 9, 297–304CrossRefGoogle Scholar
  46. (c).
    Spengler, J.; Jekel, M. Ultrasonics 2000, 38, 624–628CrossRefGoogle Scholar
  47. (d).
    Liu, R. H.; Yang, J. N.; Pindera, M. Z.; Athavale, M.; Grodzinski, P. Lab Chip 2002, 2, 151–157.CrossRefGoogle Scholar
  48. 20.
    Lee, C. L. K.; Sem, Z. Y.; Hendra, H.; Liu, X. Q.; Kwan, W. L. J. Flow Chem. 2013, 3, 114–117.CrossRefGoogle Scholar
  49. 21.
    Thompson, L. H.; Doraiswamy, L. K. Ind. Eng. Chem. Res. 1999, 38, 1215–1249.CrossRefGoogle Scholar
  50. 22.(a)
    Marcati, A.; Serra, C.; Bouquey, M.; Prat, L. Chem. Eng. Tech. 2010, 33, 1779–1787CrossRefGoogle Scholar
  51. (b).
    Barnes, S. E.; Cygan, Z. T.; Yates, J. K.; Beers, K. L.; Amis, E. J. Analyst 2006, 131, 1027–1033CrossRefGoogle Scholar
  52. (c).
    Xu, S. Q.; Nie, Z. H.; Seo, M.; Lewis, P.; Kumacheva, E.; Stone, H. A.; Garstecki, P.; Weibel, D. B.; Gitlin, I.; Whitesides, G. M. Angew. Chem., Int. Ed. 2005, 44, 724–728CrossRefGoogle Scholar
  53. (d).
    Nagasawa, H.; Mae, K. Ind. Eng. Chem. Res. 2006, 45, 2179–2186CrossRefGoogle Scholar
  54. (e).
    Li, W.; Pharn, H. H.; Nie, Z.; MacDonald, B.; Guenther, A.; Kumacheva, E. J. Am. Chem. Soc. 2008, 130, 9935–9941CrossRefGoogle Scholar
  55. (f).
    Kuntaegowdanahalli, S. S.; Bhagat, A. A. S.; Kumar, G.; Papautsky, I. Lab Chip 2009, 9, 2973–2980CrossRefGoogle Scholar
  56. (g).
    Yamada, M.; Seki, M. Lab Chip 2005, 5, 1233–1239CrossRefGoogle Scholar
  57. (h).
    Poe, S. L.; Cummings, M. A.; Haaf, M. R.; McQuade, D. T. Angew. Chem, Int. Ed. 2006, 45, 1544–1548.CrossRefGoogle Scholar
  58. 23.(a)
    Goodell, J. R.; McMullen, J. P.; Zaborenko, N.; Maloney, J. R.; Ho, C. X.; Jensen, K. F.; Porco, J. A.; Beeler, A. B. J. Org. Chem. 2009, 74, 6169–6180CrossRefGoogle Scholar
  59. (b).
    Bedore, M. W.; Zaborenko, N.; Jensen, K. F.; Jamison, T. F. Org. Process Res. Dev. 2010, 14, 432–440.CrossRefGoogle Scholar
  60. 24.(a)
    Wang, J. Y.; Sui, G. D.; Mocharla, V. P.; Lin, R. J.; Phelps, M. E.; Kolb, H. C.; Tseng, H. R. Angew. Chem., Int. Ed. 2006, 45, 5276–5281CrossRefGoogle Scholar
  61. (b).
    Treece, J. L.; Goodell, J. R.; Velde, D. V.; Porco, J. A.; Aube, J. J. Org. Chem. 2010, 75, 2028–2038.CrossRefGoogle Scholar
  62. 25.(a)
    Tiggelaar, R. M.; Benito-Lopez, F.; Hermes, D. C.; Rathgen, H.; Egberink, R. J. M.; Mugele, F. G.; Reinhoudt, D. N.; van den Berg, A.; Verboom, W.; Gardeniers, H. Chem. Eng. J. 2007, 131, 163–170CrossRefGoogle Scholar
  63. (b).
    Calabrese, G. S.; Pissavini, S. AIChEJ. 2011, 57, 828–834.CrossRefGoogle Scholar
  64. 26.
    Jensen, K. F. MRS Bull. 2006, 31, 101–107.CrossRefGoogle Scholar
  65. 27.
    Kuhn, S.; Hartman, R. L.; Sultana, M.; Nagy, K. D.; Marre, S.; Jensen, K. F. Langmuir 2011, 27, 6519–6527.CrossRefGoogle Scholar
  66. 28.(a)
    Marre, S.; Adamo, A.; Basak, S.; Aymonier, C.; Jensen, K. F. Ind. Eng. Chem. Res. 2010, 49, 11310–11320CrossRefGoogle Scholar
  67. (b).
    Trachsel, F.; Hutter, C.; von Rohr, P. R. Chem. Eng. J. 2008, 135 (Supplement 1), S309–S316.CrossRefGoogle Scholar
  68. 29.(a)
    Feke, D. L.; Prabhu, N. D.; Mann, J. A.; Mann, J. A. J. Phys. Chem. 1984, 88, 5735–5739CrossRefGoogle Scholar
  69. (b).
    Schenkel, J. H.; Kitchener, J. A. Trans. Faraday Soc. 1960, 56, 161.CrossRefGoogle Scholar
  70. 30.(a)
    Monson, L.; Moon, S. I.; Extrand, C. W. J. Appl. Polym. Sci. 2013, 127, 1637–1642CrossRefGoogle Scholar
  71. (b).
    Ebnesajjad, S.; Khaladkar, P. R. Fluoropolymers Applications in Chem-ical Processing Industries: The Definitive User’s Guide and Databook; William Andrew Publishing: Norwich, NY, 2004Google Scholar
  72. (c).
    Tubing. IDEX Health & Science: 2014; pp. 61–89Google Scholar
  73. (d).
    DuPontTM Teflon® PfA Fluoroplastic Film. DuPont: 2013; p. 3Google Scholar
  74. (e).
    DuPontTM Teflon® FEP Fluoroplastic Film. DuPont: 2013; p. 4.Google Scholar
  75. 31.
    Lorber, N.; Sarrazin, F.; Guillot, P.; Panizza, P.; Colin, A.; Pavageau, B.; Hany, C.; Maestro, P.; Marre, S.; Delclos, T.; Aymonier, C.; Subra, P.; Prat, L.; Gourdon, C.; Mignard, E. Lab Chip 2011, 11, 779–787.CrossRefGoogle Scholar
  76. 32.
    Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Angew. Chem., Int. Ed. 2011, 50, 7502–7519.CrossRefGoogle Scholar
  77. 33.
    Yen, B. K. H. Microfluidic Reactors for the Synthesis of Nanocrystals. Massachusetts Institute of Technology: Cambridge, MA, 2007.Google Scholar

Copyright information

© Akadémiai Kiadó 2015

Authors and Affiliations

  • Yizheng Chen
    • 1
  • Jasmine C. Sabio
    • 1
  • Ryan L. Hartman
    • 1
  1. 1.Department of Chemical and Biological EngineeringThe University of AlabamaTuscaloosaUnited States

Personalised recommendations