Skip to main content
Log in

The effect of an invasive bryozoan on community diversity and structure varies across two locations

  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Foundation species and invasive species strongly influence community diversity and structure, but typically in different ways. However, when widespread invasive species provide novel habitat within a community, their net effect may depend on both the environment and community composition. Fouling communities in northern and southern California harbors were surveyed to determine whether there was variation between two locations in the percent cover of an invasive bryozoan, Watersipora subtorquata (d’Orbigny, 1852), and its relationship to community diversity and composition in these two environments. Diversity significantly differed between locations and had a location-dependent association with W. subtorquata abundance. Communities were significantly dissimilar between locations, and W. subtorquata abundance had the highest percent contribution to community dissimilarity when compared to other species in the community. These results suggest that invasive species may have both facilitative and inhibitive relationships with species in a community, but that the net balance of these interactions depends on both the environmental and community context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIC:

Akaike Information Criterion

GLMM:

Generalized Linear Mixed Model

nMDS:

nonmetric Multidimensional Scaling

PERMANOVA:

Permutational Analysis of Variance

SIMPER:

Similarity Percentage

References

  • Angelini, C. and B.R. Silliman. 2014. Secondary foundation species as drivers of trophic and functional diversity: Evidence from a tree-epiphyte system. Ecology 95:185–196.

    Article  PubMed  Google Scholar 

  • Bax, N., A. Williamson, M. Aguero, E. Gonzalez and W. Geeves. 2003. Marine invasive alien species: a threat to global biodiversity. Mar. Policy 27:313–323.

    Article  Google Scholar 

  • Bertness, M.D. and R. Callaway. 1994. Positive interactions in communities. Trends Ecol. Evol. 9:187–191.

    Article  Google Scholar 

  • Bruno, J.F., J.J. Stachowicz and M.D. Bertness. 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18:119–125.

    Article  Google Scholar 

  • Carlton, J.T. 2009. Deep invasion ecology and the assembly of communities in historical time. In: Rilov, G. and Crooks, J. A. (eds), Biological Invasions in Marine Ecosystems –Ecological, Management and Geographic Perspectives. Springer, Berlin. pp. 13–56.

    Chapter  Google Scholar 

  • Carlton, J.T. 2008. The Light and Smith Manual: Intertidal Invertebrates from Central California to Oregon. Q. Rev. Biol. 83:130–130.

    Google Scholar 

  • Cifuentes, M., I. Krueger, C.P. Dumont, M. Lenz and M. Thiel. 2010. Does primary colonization or community structure determine the succession of fouling communities? J. Exp. Mar. Bio. Ecol. 395:10–20.

    Article  Google Scholar 

  • Colautti, R.I. and H.J. MacIsaac. 2004. A neutral terminology to define ‘invasive’ species. Divers. Distrib. 10:135–141.

    Article  Google Scholar 

  • Crooks, J.A. 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 2:153–166.

    Article  Google Scholar 

  • Crowl, T.A., T.O. Crist, R.R. Parmenter, G. Belovsky and A.E. Lugo. 2008. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 6:238–246.

    Article  Google Scholar 

  • Davis, K. and D.J. Marshall. 2014. Offspring size in a resident species affects community assembly. J. Anim. Ecol. 83:322–331.

    Article  PubMed  Google Scholar 

  • Dayton, P.K. 1972. Toward an understanding of community resilience and the potential effects of enrichment to the benthos at McMurdo Sound, Antarctica. Proc. Colloq. Conserv. Probl. Antarct. 81–96.

  • Dayton, P.K. and R.R. Hessler. 1972. Role of biological disturbance in maintaining diversity in the deep sea. Deep Sea Res. Oceanogr. Abstr. 19:199–208.

    Article  Google Scholar 

  • Edwards, K.F. and J.J. Stachowicz. 2010. Multivariate trade-offs, succession, and phenological differentiation in a guild of colonial invertebrates. Ecology 91:3146–3152.

    Article  PubMed  Google Scholar 

  • Edwards, K.F. and J.J. Stachowicz. 2012. Temporally varying larval settlement, competition, and coexistence in a sessile invertebrate community. Mar. Ecol. Prog. Ser. 462:93–102.

    Article  Google Scholar 

  • Floerl, O., T. Pool and G. Inglis. 2004. Positive interactions between nonindigenous species facilitate transport by human vectors. Ecol. Appl. 14:1724–1736.

    Article  Google Scholar 

  • Gittenberger, A. 2009. Invasive tunicates on Zeeland and Prince Edward Island mussels, and management practices in The Netherlands. Aquat. Invasions 4:279–281.

    Article  Google Scholar 

  • Gittenberger, A. 2007. Recent population expansions of non-native ascidians in The Netherlands. J. Exp. Mar. Bio. Ecol. 342:122–126.

    Article  Google Scholar 

  • Graebner, R.C., R.M. Callaway and D. Montesinos. 2012. Invasive species grows faster, competes better, and shows greater evolution toward increased seed size and growth than exotic non-invasive congeners. Plant Ecol. 213:545–553.

    Article  Google Scholar 

  • Graham, M.H. 2004. Effects of local deforestation on the diversity and structure of Southern California giant kelp forest food webs. Ecosystems 7:341–357.

    Article  Google Scholar 

  • Holbrook, S.J., A.J. Brooks, R.J. Schmitt and H.L. Stewart. 2008. Effects of sheltering fish on growth of their host corals. Mar. Biol. 155:521–530.

    Article  Google Scholar 

  • Hughes, B.B. 2010. Variable effects of a kelp foundation species on rocky intertidal diversity and species interactions in central California. J. Exp. Mar. Bio. Ecol. 393:90–99.

    Article  Google Scholar 

  • Knight, N.S., C. Prentice, M. Tseng and M.I. O’Connor. 2015. A comparison of epifaunal invertebrate communities in native eelgrass Zostera marina and non-native Zostera japonica at Tsawwassen, BC. Mar. Biol. Res. 11:564–571.

    Article  Google Scholar 

  • Kohler, K.E. and S.M. Gill. 2006. Coral Point Count with Excel extensions (CPCe):A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32:1259–1269.

    Article  Google Scholar 

  • Legendre, P., D. Borcard and P.R. Peres-Neto. 2005. Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecol. Monogr. 75:435–450.

    Article  Google Scholar 

  • Levine, J.M., P.B. Adler and S.G. Yelenik. 2004. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7:975–989.

    Article  Google Scholar 

  • Lockwood, J.L., M.F. Hoopes, M.P. Marchetti. 2013. Invasion Ecology. Blackwell Publishing, Malden, USA.

    Google Scholar 

  • Lord, J., R. Whitlatch and E.D. Grosholz. 2015. Predicting competitive shifts and responses to climate change based on latitudinal distributions of species assemblages. Ecology 96:1264–1274.

    Article  PubMed  Google Scholar 

  • Lord, J.P. 2016. Temperature, space availability, and species assemblages impact competition in global fouling communities. Biol. Invasions.

  • Mackie, J.A., M.J. Keough and L. Christidis. 2006. Invasion patterns inferred from cytochrome oxidase I sequences in three bryozoans, Bugula neritina, Watersipora subtorquata, and Watersipora arcuata. Mar. Biol. 149:285–295.

    Article  CAS  Google Scholar 

  • Mackie, J.A, J.A. Darling and J.B. Geller. 2012. Ecology of cryptic invasions: latitudinal segregation among Watersipora (Bryozoa) species. Sci. Rep. 2:871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marasinghe, M.M.K.I., R.R.M.K.P. Ranatunga and A.C. Anil. 2018. Settlement of non-native Watersipora subtorquata (d’Orbigny, 1852) in artificial collectors deployed in Colombo Port, Sri Lanka. BioInvasions Rec. 7(1):7–14.

    Article  Google Scholar 

  • McCuller, M.I. and J.T. Carlton. 2018. Transoceanic rafting of bryozoa (Cyclostomata, cheilostomata, and ctenostomata) across the north pacific ocean on Japanese tsunami marine debris. Aquat. Invasions 13(1):137–162.

    Article  Google Scholar 

  • McKenzie, L.A, R. Brooks and E.L. Johnston. 2011. Heritable pollution tolerance in a marine invader. Environ. Res. 111:926–32.

    Article  CAS  PubMed  Google Scholar 

  • Mckenzie, L.A., R.C. Brooks and E.L. Johnston. 2012. A widespread contaminant enhances invasion success of a marine invader. J. Appl. Ecol. 49:767–773.

    Article  CAS  Google Scholar 

  • Miranda, A.A., A.C.S. Almeida and L.M. Vieira. 2018. Non-native marine bryozoans (Bryozoa: Gymnolaemata) in Brazilian waters: Assessment, dispersal and impacts. Mar. Pollut. Bull. 130:184–191.

    Article  CAS  PubMed  Google Scholar 

  • Oksanen, J., F.G. Blanchet, R. Kindt, P. Legendre, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and H. Wagner. 2015. vegan: Community Ecology Package. R package version 2.5-1. https://CRAN.R-project.org/package=vegan

  • Palardy, J.E. and J.D. Witman. 2014. Flow, recruitment limitation, and the maintenance of diversity in marine benthic communities. Ecology 95:286–297.

    Article  PubMed  Google Scholar 

  • Parker, I., D. Simberloff and W. Lonsdale. 1999. Impact: toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1:3–19.

    Article  Google Scholar 

  • Posey, M.H. 1988. Community changes associated with the spread of an introduced seagrass,. Zostera japonica. Ecology 69(4):974–983.

    Google Scholar 

  • Power, M.E., D. Tilman, J.A. Estes, B.A. Menge, W.J. Bond, L.S. Mills, G. Daily, J.C. Castilla, J. Lubchenco and R.T. Paine. 1996. Challenges in the quest for keystones. Bioscience 46:609–620.

    Article  Google Scholar 

  • Preskitt, L.B., P.S. Vroom and C.M. Smith. 2004. A Rapid Ecological Assessment (REA) quantitative survey method for benthic algae using photoquadrats with scuba. Pacific Sci. 58:201–209.

    Article  Google Scholar 

  • R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

    Google Scholar 

  • Rodriguez, L.F. 2006. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Invasions 8:927–939.

    Article  Google Scholar 

  • Rohr, J.R., C.G. Mahan and K.C. Kim. 2009. Response of arthropod biodiversity to foundation species declines: The case of the eastern hemlock. For. Ecol. Manage. 258:1503–1510.

    Article  Google Scholar 

  • Ryland, J.S. and P.J. Hayward. 1991. Marine flora and fauna of the northeastern United States: Erect Bryozoa. NOAA Tech. Rep. NMFS. 99:1–48.

    Google Scholar 

  • Sellheim, K., J.J. Stachowicz and R.C. Coates. 2009. Effects of a nonnative habitat-forming species on mobile and sessile epifaunal communities. Mar. Ecol. Prog. Ser. 398:69–80.

    Article  Google Scholar 

  • Simberloff, D. 1995. Why do introduced species appear to devastate islands more than mainland areas? Pacific Sci. 49:87–97.

    Google Scholar 

  • Sorte, C.J.B., S.L. Williams and R.A. Zerebecki. 2010. Ocean warming increases threat of invasive species in a marine fouling community. Ecology 91:2198–2204.

    Article  PubMed  Google Scholar 

  • Stachowicz, J.J. 2001. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235–246.

    Article  Google Scholar 

  • Stachowicz, J.J., J.F. Bruno and J.E. Duffy. 2007. Understanding the effects of marine biodiversity on communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 38:739–66.

    Article  Google Scholar 

  • Stachowicz, J.J. and J.E. Byrnes. 2006. Species diversity, invasion success, and ecosystem functioning: Disentangling the influence of resource competition, facilitation, and extrinsic factors. Mar. Ecol. Prog. Ser. 311:251–262.

    Article  Google Scholar 

  • Stachowicz, J.J., J.R. Terwin, R.B. Whitlatch and R.W. Osman. 2002. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions. Proc. Natl. Acad. Sci. U. S. A. 99:15497–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen, M.S., P.A. Stæhr, L. Nejrup and D.R. Schiel. 2013. Effects of the invasive macroalgae Gracilaria vermiculophylla on two co-occurring foundation species and associated invertebrates. Aquat. Invasions 8:133–145.

    Article  Google Scholar 

  • Thomsen, M.S., T. Wernberg, P.M. South and D.R. Schiel. 2016. Non-native seaweeds drive changes in marine coastal communities around the world. In: Hu, Z.M. and Fraser, C, (eds), Seaweed Phylogeography. Springer, Dordrecht. pp. 147–186.

    Chapter  Google Scholar 

  • Van Kleunen, M., E. Weber and M. Fischer. 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13(2):235–45.

    Article  PubMed  Google Scholar 

  • Vieira, L., M. Jones and P. Taylor. 2014. The identity of the invasive fouling bryozoan Watersipora subtorquata (d’Orbigny) and some other congeneric species. Zootaxa 3857:151–182.

    Article  PubMed  Google Scholar 

  • Willette, D.A. and R.F. Ambrose. 2012. Effects of the invasive seagrass Halophila stipulacea on the native seagrass, Syringodium filiforme, and associated fish and epibiota communities in the Eastern Caribbean. Aquat. Bot. 103:74–82.

    Article  Google Scholar 

  • Willig, M.R. and S.J. Presley. 2018. Biodiversity and disturbance. Encyclopedia of the Anthropocene 3:45–51.

    Article  Google Scholar 

  • Wyatt, A.S.J., C.L. Hewitt, D.I. Walker and T.J. Ward. 2005. Marine introductions in the Shark Bay World Heritage Property, Western Australia: A preliminary assessment. Divers. Distrib. 11:33–44.

    Article  Google Scholar 

  • York, P., P. Evangelista, S. Kumar, J. Graham, C. Flather and T. Stohlgren. 2011. A habitat overlap analysis derived from maxent for tamarisk and the south-western willow flycatcher. Front. Earth Sci. 5:120–129.

    Article  CAS  Google Scholar 

  • Zerebecki, R.A. and C.J.B. Sorte. 2011. Temperature tolerance and stress proteins as mechanisms of invasive species success. PLoS One 6:e14806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. R. Scott.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, Z.R., terHorst, C.P. The effect of an invasive bryozoan on community diversity and structure varies across two locations. COMMUNITY ECOLOGY 20, 258–265 (2019). https://doi.org/10.1556/168.2019.20.3.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/168.2019.20.3.6

Keywords

Navigation