Skip to main content
Log in

Habitat mosaic of gravel pit as a potential refuge for carabids: a case study from Central Europe

  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

In gravel pits, a mosaic of habitats with various environmental conditions created during mining has a great potential for persistence of many species. We focused on such a mosaic in a gravel pit surrounded by agricultural landscape. We investigated which habitats within sludge deposits in different successional stages (from bare sands to secondary forest) and agriculturally reclaimed area enhanced diversity, species richness and abundance of carabids and supported occurrence of threatened species. Since some of these habitats were extensively managed while others were invaded by the alien plant Solidago gigantea, we also tested the effect of management and the cover of S. gigantea on carabid assemblages. We found a gradient in carabid assemblages from psammophilous ones in bare sandy soils towards similar assemblages in plots with well-developed vegetation cover. Here, carabid assemblages were represented predominantly by common species of agricultural and forest lands without higher habitat requirements. Contrarily, plots with bare sand could serve as a refuge for rare psammophilous carabid species, which cannot occur in surrounding landscape due to vanished suitable habitats. Therefore, keeping some of habitats in early plant successional states is important for maintaining habitat mosaic and for persistence of such species as well. Management of grasslands and cover of S. gigantea had no effect on carabid assemblage. We presume that carabids were likely more affected by vegetation structure and density than species composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AICc:

Akaike Information Criterion

GLMM:

Generalized Linear Mixed Model

NMDS:

Non-metric Multidimensional Scaling

R:

Reclaimed area

SD:

Sludge Deposit

References

  • Altieri, M.A. 1999. The ecological role of biodiversity in agroecosystems. Agr. Ecosyst. Environ. 74:19–31.

    Article  Google Scholar 

  • Baranová, B., P. Manko and T. Jászay. 2014. Differences in surface-dwelling beetles of grasslands invaded and non-invaded by goldenrods (Solidago canadensis, S. gigantea) with special reference to Carabidae. J. Insect Conserv. 18:623–635.

    Article  Google Scholar 

  • Bartoń, K. 2019. MuMIn: Multi-Model Inference. https://CRAN.R-project.org/package=MuMIn (accessed 1 July 2019).

  • Bates, D., M. Maechler, B. Bolker and S. Walker. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67:1–48.

    Article  Google Scholar 

  • Beneš, J., P. Kepka and M. Konvička. 2003. Limestone quarries as refuges for European xerophilous butterflies. Conserv. Biol. 17:1058–1069.

    Article  Google Scholar 

  • Brändle, M., W. Durka and M. Altmoos. 2000. Diversity of surface dwelling beetle assemblages in open-cast lignite mines in Central Germany. Biodivers. Conserv. 9:1297–1311.

    Article  Google Scholar 

  • Bretz, F., T. Hothorn and P. Westfall. 2010. Multiple Comparisons Using R. CRC Press, Boca Raton.

    Google Scholar 

  • Burnham, K.P. and D.R. Anderson. 2002. Model Selection and Multimodel Inference: a Practical Information Theoretic Approach. Springer-Verlag, New York.

    Google Scholar 

  • Chao, A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791.

    Article  CAS  PubMed  Google Scholar 

  • Danihelka, J., J. Chrtek and Z. Kaplan. 2012. Checklist of vascular plants of the Czech Republic. Preslia 84:647–811.

    Google Scholar 

  • de Groot, M., D. Kleijn and N. Jogan. 2007. Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by. Solidago canadensis. Biol. Conserv 136:612–617.

    Article  Google Scholar 

  • Elek, Z. and B. Tóthmérész. 2010. Carabid beetles among grassland –forest edge –beech forest habitats in Northern Hungary. Community Ecol. 11:211–216.

    Article  Google Scholar 

  • Ernst, C.M. and N. Cappuccino. 2005. The effect of an invasive alien vine Vincetoxicum rossicum (Asclepiadaceae) on arthropod populations in Ontario old fields. Biol. Invasions 7:417–425.

    Article  Google Scholar 

  • Eyre, M.D., M.L. Luff and J.C. Woodward. 2003. Beetles (Coleoptera) on brownfield sites in England: an important conservation resource? J. Insect Conserv. 7:223–231.

    Article  Google Scholar 

  • Fanta, J. and H. Siepel. 2010. Inland Drift Sand Landscapes. KNNV Publishing, Zeist, The Netherlands.

    Book  Google Scholar 

  • Harabiš, F. and A. Dolný. 2015. Odonates need natural disturbances: How human-induced dynamics affect the diversity of dragonfly assemblages. Freshw. Sci. 34:1050–1057.

    Article  Google Scholar 

  • Heneberg, P., P. Bogusch and J. Řehounek. 2012. Sandpits provide critical refuge for bees and wasps (Hymenoptera: Apocrita). J. Insect Conserv. 17:473–490.

    Article  Google Scholar 

  • Heneberg, P., P. Hesoun and J. Skuhrovec. 2016. Succession of arthropods on xerothermophilous habitats formed by sand quarrying: Epigeic beetles (Coleoptera) and orthopteroids (Orthoptera, Dermaptera and Blattodea). Ecol. Eng. 95:340–356.

    Article  Google Scholar 

  • Hodeček, J., T. Kuras, J. Šipoš and A. Dolný. 2015. Post-industrial areas as successional habitats: Long-term changes of functional diversity in beetle communities. Basic Appl. Ecol. 16:629–640.

    Article  Google Scholar 

  • Hodeček, J., T. Kuras, J. Šipoš and A. Dolný. 2016. Role of reclamation in the formation of functional structure of beetle communities: A different approach to restoration. Ecol. Eng. 94:537–544.

    Article  Google Scholar 

  • Honěk, A. 1997. The effect of temperature on the activity density of Carabidae (Coleoptera) in fallow land. Eur. J. Entomol. 94:97–104.

    Google Scholar 

  • Hothorn, T., F. Bretz and P. Westfall. 2008. Simultaneous inference in general parametric models. Biometrical J. 50:346–363.

    Article  Google Scholar 

  • Humbert, J.Y., J. Ghazoul and T. Walter. 2009. Meadow harvesting and their impacts on field fauna. Agr. Ecosyst. Environ. 130:1–8.

    Article  Google Scholar 

  • Hůrka, K. 1996. Carabidae of the Czech and Slovak Republics. Kabourek, Zlín.

    Google Scholar 

  • Kašák, J., J. Foit and M. Hučín. 2017. Succession of ground beetle (Coleoptera: Carabidae) communities after windthrow disturbance in a montane Norway spruce forest in the Hrubý Jeseník Mts. (Czech Republic). Cent. Eur. For. J. 63:180–187.

    Google Scholar 

  • Lövei, G.L. 2005. Generalised entropy indices have a long history in ecology –a comment. Community Ecol. 6:245–247.

    Article  Google Scholar 

  • Lövei, G.L. and K.D. Sunderland. 1996. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41:231–256.

    Article  PubMed  Google Scholar 

  • Magura, T. 2002. Carabids and forest edge: spatial pattern and edge effect. Forest Ecol. Manag. 157:23–37.

    Article  Google Scholar 

  • Magura, T., G.L. Lövei and B. Tóthmérész. 2017. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles. Ecol. Evol. 7:1009–1017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Magura, T., B. Tóthmérész and Z. Elek. 2006. Changes in carabid beetle assemblages as Norway spruce plantations age. Community Ecol. 7:1–12.

    Article  Google Scholar 

  • Mauremooto, J.R., S.D. Wratten, S.P. Worner and G.L.A. Fry. 1995. Permeability of hedgerows to predatory carabid beetles. Agr. Ecosyst. Environ. 52:141–148.

    Article  Google Scholar 

  • Nováková, L. and P. Šťastná. 2013a. Diversity of Carabidae in limestone quarries of South Moravia.. Acta Univ. Agric. Silvic. Mendel. Brun. 61:757–764.

    Article  Google Scholar 

  • Nováková, L. and P. Šťastná. 2013b. Diversity of carabid beetles (Carabidae) in quarries of Pálava.. Acta Univ. Agric. Silvic. Mendel. Brun. 61:1807–1815.

    Article  Google Scholar 

  • Nováková, L. and P. Šťastná. 2014. Carabidae of an active limestone quarry. Acta Univ. Agric. Silvic. Mendel. Brun. 62:185–190.

    Article  Google Scholar 

  • Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlin. P.R. Minchin, R. B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs and H. Wagner. 2019. vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan (accessed 1 July 2019).

  • Ottonetti, L., L. Tucci and G. Santini. 2006. Recolonization patterns of ants in a rehabilitated lignite mine in Central Italy: potential for the use of Mediterranean ants as indicators of restoration processes. Restor. Ecol. 14:60–66.

    Article  Google Scholar 

  • Prach, K., K. Řehounková, J. Řehounek and P. Konvalinková. 2011. Ecological restoration of central European mining sites: a summary of a multi-site analysis. Landsc. Res. 36:263–268.

    Article  Google Scholar 

  • Prach, K., K. Řehounková, K. Lencová, A. Jírová, P. Konvalinková, O. Mudrák, V. Student, Z. Vaněček, L. Tichý, P. Petřík, P. Šmilauer and P. Pyšek. 2014. Vegetation succession in restoration of disturbed sites in Central Europe: the direction of succession and species richness across 19 seres. Appl. Veg. Sci. 17:193–200.

    Article  Google Scholar 

  • R Core Team. 2017. R: A language and environment for statistical computing. https://www.R-project.org (accessed 18 August 2017).

  • Rainio, J. and J. Niemelä. 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 12:487–506.

    Article  Google Scholar 

  • Ricotta, C. 2005. On parametric diversity indices in ecology: A historical note. Community Ecol. 6:241–244.

    Article  Google Scholar 

  • Riksen, M., R. Ketner-Oostra, C. van Turnhout, M. Nijssen, D. Goossens, P.D. Jungerius and W. Spaan. 2006. Will we lose the last active inland drift sands of WesternEurope? The origin and development of the inland drift-sand ecotype in the Netherlands. Landsc. Ecol. 21:431–447.

    Article  Google Scholar 

  • Ranjha, M.H. and U. Irmler. 2014. Movement of carabids from grassy strips to crop land in organic agriculture. J. Insect Conserv. 18:457–467.

    Article  Google Scholar 

  • Růžičková, J. and M. Veselý. 2018. Movement activity and habitat use of Carabus ullrichii (Coleoptera: Carabidae): The forest edge as a mating site? Entomol. Sci. 21:76–83.

    Article  Google Scholar 

  • Řehounek, J., K. Řehounková, T. Tropek and K. Prach. 2015. Ekologická obnova území narušených těžbou nerostných surovin a průmyslovými deponiemi. Calla, České Budějovice [in Czech].

    Google Scholar 

  • Řehounková, K. and K. Prach. 2008. Spontaneous vegetation succession in gravel–sand pits: a potential for restoration. Restor. Ecol. 16:305–312.

    Article  Google Scholar 

  • Small, E.C., J.P. Sadler and M.G. Telfer. 2003. Carabid beetle assemblages on urban derelict sites in Birmingham, UK. J. Insect Conserv. 6:233–246.

    Article  Google Scholar 

  • Schwerk, A. 2004. Changes in carabid beetle fauna (Coleoptera: Carabidae) along successional gradients in post-industrial areas in Central Poland. Eur. J. Entomol. 111:677–685.

    Article  Google Scholar 

  • Šipoš, J., J. Hodeček, T. Kuras and A. Dolný. 2017. Principal determinants of species and functional diversity of carabid beetle assemblages during succession at post-industrial sites. Bull. Entomol. Res. 107:466–477.

    Article  PubMed  Google Scholar 

  • Topp, W., K. Thelen and H. Kappes. 2010. Soil dumping techniques and afforestation drive ground-dwelling bee the assemblages in a 25-year-old open-cast mining reclamation area. Ecol. Eng. 36:751–756.

    Article  Google Scholar 

  • Tóthmérész, B. 1995. Comparison of different methods for diversity ordering. J. Veg. Sci. 6:283–290.

    Article  Google Scholar 

  • Trnka, F. and S. Rada. 2015. Grasshoppers, crickets (Orthoptera) and earwigs (Dermaptera) of Tovačov gravel pit (central Moravia, Czech Republic): New locality for several thermophilous species in anthropogenic secondary habitat. Acta Mus. Siles. Sci. Natur. 64:199–205.

    Google Scholar 

  • Tropek, R., T. Kadlec, P. Karesova, L. Spitzer, P. Kocarek, I. Malenovsky, P. Banar, I.H. Tuf, M. Hejda and M. Konvicka. 2010. Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants. J. Appl. Ecol. 47:139–147.

    Article  Google Scholar 

  • Tropek, R. and J. Řehounek. 2011. Bezobratlí postindustriálních stanovišť: Význam, ochrana a management. Calla, České Budějovice [in Czech].

    Google Scholar 

  • Tscharntke, T., T.A. Rand and F.J. Bianchi. 2005. The landscape context of trophic interactions: insect spillover across the cropnoncrop interface. Ann. Zool. Fenn. 42:421–432.

    Google Scholar 

  • Veselý, M. and B. Šarapatka. 2008. Effects of conversion to organic farming on carabid beetles (Carabidae) in experimental fields in the Czech Republic. Biol. Agric. Hortic. 25:289–309.

    Article  Google Scholar 

  • Veselý, P., P. Moravec and J. Stanovský. 2017. Carabidae. In: Hejda, R., J. Farkač and K. Chobot (eds.), Red List of Threatened Species of the Czech Republic. Invertebrates. Příroda, Praha. pp. 295–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Růžičková.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Růžičková, J., Hykel, M. Habitat mosaic of gravel pit as a potential refuge for carabids: a case study from Central Europe. COMMUNITY ECOLOGY 20, 215–222 (2019). https://doi.org/10.1556/168.2019.20.3.1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/168.2019.20.3.1

Keywords

Nomenclature

Navigation