Gene Action Controlling Normalized Difference Vegetation Index in Crosses of Elite Maize (Zea mays L.) Inbred Lines

Abstract

The quest for precise and rapid phenotyping of germplasm is increasing the interest of breeders and physiologists in the application of remote sensing techniques in maize breeding. Twenty-four drought-tolerant maize inbred lines were crossed using a modified North Carolina II mating scheme to generate 96 single-cross hybrids. The parents and the hybrids were evaluated under full irrigation and drought stress conditions in the dry seasons of 2010 and 2011 at Ikenne, southwest Nigeria. Normalized difference vegetation index (NDVI) was recorded at 3- and 8-leaf growth stages. Hybrids differed significantly for NDVI. Both general (GCA) and specific (SCA) combining ability effects were significant for NDVI measured at 8-leaf stage under both irrigation regimes, with GCA accounting for 53% of the total variation under full irrigation. Both additive and non-additive genetic effects played significant roles in the inheritance of NDVI. The females GCA effects for grain yield was positively correlated with females GCA effects for NDVI (r = 0.72, p < 0.0001) and the male GCA effects for grain yield was also correlated with males GCA effects for NDVI (r = 0.78, p < 0.0001) at 8-leaf stage under full irrigation. These results indicate that live green biomass accumulation in maize could be identified through early screening of a large number of genotypes using NDVI for developing productive hybrids.

This is a preview of subscription content, access via your institution.

References

  1. Adebayo, M.A., Menkir, A., Blay, E., Gracen, V., Danquah, E., Hearne, S. 2014a. Genetic analysis of drought tolerance in adapted × exotic crosses of maize inbred lines under managed stress conditions. Euphytica 196:261–270.

    Article  CAS  Google Scholar 

  2. Adebayo, M.A., Menkir, A., Hearne, S. 2014b. Relationships between normalized difference vegetation index (NDVI) and other traits of tropical testcross maize (Zea mays L.) hybrids under drought and well-watered conditions. J. Appl. Agric. Res. 6:173–180.

    Google Scholar 

  3. Adebayo, M.A., Menkir, A., Malaku, G., Blay, E., Gracen, V., Danquah, E., Ladejobi, O. 2015. Diversity assessment of drought tolerant exotic and adapted maize inbred lines with microsatellite markers. J. Crop Sci. Biotech. 18:147–154.

    Article  Google Scholar 

  4. Aparicio, N., Villegas, D., Casadesus, J., Araus, J.L., Royo, C. 2000. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron. J. 92:83–91.

    Article  Google Scholar 

  5. Araus, J.L., Casadesús, J., Bort, J. 2001. Recent tools for the screening of physiological traits determining yield. In: Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A. (eds), Application of Physiolograin Yield in Wheat Breeding. CIMMYT. Mexico. pp. 59–77.

    Google Scholar 

  6. Araus, J.L., Sanchez, C., Cabrera-Bosquet, L. 2010. Is heterosis in maize mediated through better water use? New Phytologist 187:392–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barker, D.W., Sawyer, J.E. 2010. Using active canopy sensors to quantify corn nitrogen stress and nitrogen application rate. Agron. J. 102:964–971.

    Article  CAS  Google Scholar 

  8. Bastidas, A.D., Barahona, R.R., Cerón-Muñoz, M. 2016. Variation in the normalized difference vegetation index (NDVI) in dairy farms in northern Antioquia. Livestock Research for Rural Development. LRDR Newsletter 28(3) http://www.lrrd.org/lrrd28/3/bast28043.html

  9. Cabrera-Bosquet, L, Molero, G., Stellacci, A.M., Bort, J., Nogués, S., Araus, J.L, Cabrera-Bosquet, L., Molero, G., Stellacci, A.M., Bort, J., Nogués, S., Araus, J.L. 2011. NDVI as a potential tool for predicting biomass, plant nitrogen content and growth in heat genotypes subjected to different water and nitrogen conditions. Cereal Res. Commun. 39:147–159.

    Article  Google Scholar 

  10. Comstock, R.E., Robinson, H.F. 1948. The components of genetic variance in population of biparental progenies and their use in estimating the average degree of dominance. Biometrics 4:254–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deering, D.W. 1978. Rangeland reflectance characteristics measured by aircraft and spacecraft sensors. Ph.D. diss. Texas A&M Univ., College Station, USA.

    Google Scholar 

  12. Derera, J., Tongoona, P., Vivek, B.S., Laing, M.D. 2008. Gene action controlling grain yield and secondary traits in southern African maize hybrids under drought and non-drought environments. Euphytica 162:411–422.

    Article  Google Scholar 

  13. Dhliwayo, T., Pixley, K., Menkir, A., Warburton, M. 2009. Combining ability, genetic distances, and heterosis among elite CIMMYT and IITA tropical maize inbred lines. Crop Sci. 49:1201–1210.

    Article  Google Scholar 

  14. Edmeades, G.O., Bänziger, M., Chapman, S.C., Ribaut, J.M., Bolaños, J. 1995. Recent advances in breeding for drought tolerance in maize. In: Badu-Apraku, B. (ed.), Contributing to Food Self-sufficiency: Maize Research and Development in West and Central Africa. Proc. of a Regional Maize Workshop, 28 May–2 June 1995. IITA. Ibadan, Nigeria. pp. 24–41

    Google Scholar 

  15. El-Hendawy, S., Al-Suhaibani, N., Salem, A.E., Ur Rehman, S., Schmidhalter, U. 2015. Spectral reflectance indices as a rapid and nondestructive phenotyping tool for estimating different morphophysiological traits of contrasting spring wheat germplasms under arid conditions. Turkish J. of Agric. and Forestry 39:1–16.

    Article  Google Scholar 

  16. Elliott, G.A., Regan, K.L. 1993. Use of reflectance measurements to estimate early cereal biomass production on sandplain soils. Austr. J. Exp. Agric. 33:179–183.

    Article  Google Scholar 

  17. Gizaw, S.A., Garland-Campbell, K., Cartera, A.H. 2016a. Use of spectral reflectance for indirect selection of yield potential and stability in Pacific Northwest winter wheat. Field Crops Res. 196:199–206.

    Article  Google Scholar 

  18. Gizaw, S.A., Garland-Campbell, K., Cartera, A.H. 2016b. Evaluation of agronomic traits and spectral reflectance in Pacific Northwest winter wheat under rain-fed and irrigated conditions. Field Crops Res. 196:168–179.

    Article  Google Scholar 

  19. Hallauer, A.R., Miranda-Fo, J.B. 1988. Quantitative Genetics in Maize Breeding. 2nd edn. Iowa State University Press. Ames, IO, USA.

    Google Scholar 

  20. Inman, D., Khosla, R.., Reich, R.M., Westfall, D.G. 2008. Normalized difference vegetation index and soil color-based management zones in irrigated maize. Agron. J. 100: 60–66.

    Article  Google Scholar 

  21. Kempthorne, O. 1957. An Introduction to Genetic Statistics. John Wiley and Sons, Inc. New York, USA.

    Google Scholar 

  22. Koller, M., Upadhyaya, S.K. 2005. Relationships between modifies normalized vegetation index and leaf area index for processing tomato. Appl. Engin. in Agric. 21:927–933.

    Article  Google Scholar 

  23. Kumar, S., Roder, M.S., Singh, R.P., Kumar, S., Chand, R., Joshi, A.K., Kumar, U. 2016. Mapping of spot blotch disease resistance using NDVI as a substitute to visual observation in wheat (Triticum aestivum L.). Mol. Breed. 36:95.

    Article  Google Scholar 

  24. Liu, K., Li, Y., Hu, H., Zhou, L., Xiao, X., Yu, P. 2015. Estimating rice yield based on normalized difference vegetation index at heading stage of different nitrogen application rates in southeast of China. J. of Environ. and Agric. Sci. 2:13.

    Google Scholar 

  25. Lofton, J., Tubana, B.S., Kanke, Y., Teboh, J., Viator, H., Dalen, M. 2012. Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index. Sensors 12:7529–7547.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lopes, M.S., Reynolds, M.P. 2012. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenolograin yield. J. Exp. Bot. 63:3789–3798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu, Y., Xu, J., Yuan, Z., Hao, Z., Xie, C., Li, X., Shah, T., Lan, H., Zhang, S., Rong, T., Xu, Y. 2012. Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Mol. Breed. 30:407–418.

    Article  CAS  Google Scholar 

  28. Marti, J., Bort, J., Slafer, G.A., Araus, J.L. 2007. Can wheat yield be assessed by early measurements of NDVI? Ann. Appl. Biol. 150:253–257.

    Article  Google Scholar 

  29. Meseka, S.K., Menkir, A., Ibrahim, A.E.S., Ajala, S.O. 2006. Genetic analysis of performance of maize inbred lines selected for tolerance to drought under low nitrogen. Maydica 51:487–495.

    Google Scholar 

  30. Morris, M.L., Risopoulos, J., Beck, D. 1999. Genetic changes in farmer-recycled maize seed; a review of the evidences. CIMMYT Economics Working Paper No. 99–07. CIMMYT. Mexico.

    Google Scholar 

  31. NTech Industries. 2007. Model 505 Greenseeker handheld optical sensor unit operating manual. Available at http://www.ntechindustries.com/lit/gs/GS_Handheld_Manual_rev_K.pdf (verified 18 Jan. 2016). NTech Industries, Ukiah, CA, USA.

  32. Obsa, B.T., Eglinton, J., Coventry, S., March, T., Langridge, P., Fleury, D. 2016. Genetic analysis of developmental and adaptive traits in three doubled haploid populations of barley (Hordeum vulgare L.). Theor. Appl. Genet. 129:1139–1151.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pingali, P.L., Pandey, S. 2000. World maize needs meeting: technological opportunities and priorities for the public sector, In: Pingali, P.L. (ed.), 1999–2000 World Maize Facts and Trends. CIMMYT, Mexico. pp. 1–3.

    Google Scholar 

  34. Price, J.C., Bausch, W.C. 1995. Leaf area index estimation from visible and near-infrared reflectance data. Remote Sens. Environ. 52:55–65.

    Article  Google Scholar 

  35. Raun, W.R., Johnson, G.V., Stone, M.L., Sollie, J.B., Lukina, E.V., Thomason, W.E., Schepers, J.S. 2001. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron. J. 93:131–138.

    Article  Google Scholar 

  36. Reynolds, M.P., Trethowan, R.M., van Ginkel, M., Rajaram, S. 2001. Application of physiolograin yield in wheat breeding. In: Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A. (eds), Application of Physiolograin Yield in Wheat Breeding. CIMMYT. Mexico. pp. 2–10.

    Google Scholar 

  37. Romano, G., Zia, S., Sanchez, C., Araus, J.L., Müller, J. 2011. Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Computers and Electronics in Agric. 79:67–74.

    Article  Google Scholar 

  38. Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W. 1973. Monitoring vegetation systems in the Great Plains with ERTS. In: Third ERTS Symposium, NASA SP-351. NASA, Washington, D.C., USA, Vol. 1, pp. 309–317.

    Google Scholar 

  39. SAS Institute 2009. SAS Proprietary Software Release 9.2. SAS Institute, Inc., Cary, NC, USA.

    Google Scholar 

  40. Teal, R.K., Tubana, B., Girma, K., Freeman, K.W., Arnall, D.B., Walsh, O., Raun, W.R. 2006. In-season prediction of corn grain yield. Potential using normalized difference vegetation index. Agron. J. 98:1488–1494.

    Google Scholar 

  41. Valipour, M. 2013a. Necessity of irrigated and rainfed agriculture in the world. Irrigation and Drainage Systems Engineering S9: e001.

  42. Valipour, M. 2013b. Evolution of irrigation-equipped areas as share of cultivated areas. Irrigation and Drainage Systems Engineering 2: e114.

  43. Valipour, M. 2013c. Increasing irrigation efficiency by management strategies: cutback and surge irrigation. ARPN J. of Agric. and Biol. Sci. 8:35–43.

    Google Scholar 

  44. Valipour, M. 2016. How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? Agriculture 6:53.

    Article  Google Scholar 

  45. Xijie, L. 2013. Remote sensing, normalized difference vegetation index (NDVI), and crop yield forecasting. M.Sc. Thesis, University of Illinois at Urbana-Champaign, IL, USA. 163 p.

    Google Scholar 

  46. Zhao, J., Xu, Z., Zuo, D., Wang, X. 2015. Temporal variations of reference evapotranspiration and its sensitivity to meteorological factors in Heihe River Basin, China. Water Sci. and Engin. 8:1–8.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Menkir.

Additional information

Communicated by S. Gottwald

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adebayo, M.A., Menkir, A., Hearne, S. et al. Gene Action Controlling Normalized Difference Vegetation Index in Crosses of Elite Maize (Zea mays L.) Inbred Lines. CEREAL RESEARCH COMMUNICATIONS 45, 675–686 (2017). https://doi.org/10.1556/0806.45.2017.043

Download citation

Keywords

  • Ikenne
  • NDVI
  • maize hybrids
  • Greenseeker
  • combining ability
  • GCA
  • SCA